Studying Work Practices to Assist
Tool Design in Software Engineering

Janice Singer
Institute for Information Technology
National Research Council
Ottawa, K1A O0RG6, Canada
+1 613 991 6346
singer@iit.nrc.ca

Abstract

This paper reports our experiences studying the work
practices of professonal software engineers (SEs). We
provide our reasons for following this approach, ad
describe details such as the discovery of work patterns, ad
the use of synchronized shadowing. We outline severa
studies we are currently conducting in a large
telecommuni cations company and explain how these studies
influenced the design of a software engineering exploration
environment.

1. Introduction

Studying program comprehension is fraught with
difficulties. One of the dilemmas researchers must face is
whether to work in alab setting or in the field: laboratory
experiments are difficult to generalize to the field because
variables that normally vary across field settings are fixed in
experiments and thusit is hard to say how the results will
apply in the ‘real world.’ In field studies however, it is
often impossible to adequately control variables, hence it is
not always clear what factors had a role in the results.
Another dilemma is whether to use students or industrial
software engineers (SEs): Students are easily available to
participate in studies but do not necessarily perform the
same type of work as those in industry; on the other hand
SEsin industry often have no time to participate in studies.

Due to their respective limitations, then, a number of
approaches must be followed in order to fully understand
program comprehension,. A researcher pursuing one
approach will be able to tell us certain things about
program comprehension, while a researcher pursuing
another approach will learn different things. Where different
approaches converge around the same concepts, we will
start to have a centra corpus of knowledge about the
processes used in program comprehension.

Since many laboratory studies dready exist, we have
chosen to study industrial practitionersin the field. Using a
set of largely qualitative analysis techniques we are studying
the work practices of software engineers. The study of work

Timothy Lethbridge
School of Information Technology and
Engineering
University of Ottawa
Ottawa, K1N 6N5, Canada
+1 613 562-5800 x6685
tcl @site.uottawa.ca

practicesisarelatively new field [1, 2, 5] which integrates
methodologies and theories from several different fields
including cognitive and social psychology, human-
computer interaction, business-process re-engineering, and
anthropology. From this understanding, work practice
researchers strive to design appropriate technologies for the
workplace.

This paper describes our experiences with the work
practice approach to tool design. First we explain why we
chose the work practice approach. Second, we briefly review
a series of studies we undertook to examine the work
practices of a group of SEs at a large telecommunications
company. This sets the stage for the description of a
software engineering exploration tool based on our studies.
Finally, we discuss how work practices in general can
influence tool design.

1.1 Work practices, work patterns and tool design

The Knowledge Based Reverse Engineering (KBRE)
project’s ultimate goal is to provide a group of software
engineers (SES) in an industrial telecommunications setting
with a toolset to help them maintain the system more
effectively. To thisend, we decided that our first step must
be to understand SES' daily activities as they modify ad
come to comprehend the source. We began by searching the
literature for a cataloguing of SE maintenance activities;
i.e., alist of activities SEs engage in during their work -
for instance, work with the maintenance control system, go
to meetings, reed documentation, search the source, etc.
However, in the literature, we found no clear cataloguing as
such of exactly how SEs go about solving problems and/or
comprehending the source code. While many models of
programmer comprehension exist, generaly, they do not
describe details of the comprehension process (but, c.f.,
[6]). Consequently, we decided that our first step would be
to uncover both the low-level activities and high-level goals
of SEs as they are solving a problem.

For us, a critical aspect of this endeavor was that it
focus on the workplace and the work that occurs there.
Because our ultimate goal had us placing a tool in a
particular site, we wanted to make sure that a) the tool fit
into the existing work practices of the site and b) it solved

existing problems. This is because we felt that the best way
to ensure tool acceptance was to solve the rea problems
SEs faced, while at the same time not requiring them to re-
think all of the activities in which they currently engaged.
This has been termed an evolutionary as opposed to a
revolutionary approach to tool generation.

Thus, to understand SE work practices, we began by
designing and implementing a series of studies (described
below) From there proposing technical solutions to some
of their problems. In the course of these studies, we began
to see that specific series of work practices would be
repeated, forming re-occurring patterns

Thus, we use the term work pattern to designate a re-
occurring sequence of work practices meeting a goal. We
incorporate work patternsinto our tool by having the tool,
rather than the user, accomplish many of the intervening
actions. This saves the SE from issuing severa commands.
This approach can potentially be iterated to discover higher-
level work patterns, that are themselves composed of work
patterns, thus producing a hierarchy of work patterns from
the bottom up.

To find work patterns, we analyzed our work practices
data to find the most frequent, time consuming, and
important activities. Further studies focused on these
activities to extract work patterns.

The next section describes our work practice studies. In
it, we give some generd information about the workplace,
followed by a description of the various methodologies we
pursued, with some related results.

2. Work practice studies of software
engineers

2.1 Workplace characteristics

The group we are studying maintains one of the key
products of the company: a large telecommunications
system. The management of the group is fairly informal,
with group members often able to select the problems on
which they work.

Group members work in close proximity and often walk
over to each other’s desks with questions. The group also
makes use of a laboratory in which the target hardware is
installed.

The system includes a real-time operating system axd
interacts with a large number of different hardware devices.
The system contains several million lines of code with over
16000 routines in over 8000 files. It is also divided into
numerous layers and subsystems written in a proprietary
high-level language.

The system was first fiedlded in the early 1980s and has
since been continually updated. Its importance to the
company and its evolution are expected to continue for
many years to come.

Approximately 13 people actively work on various
aspects of the system at the current time. Over 100 people
have made changes to the source code during the life of the
system.

The group follows a well-defined process for creating
new system features. They also keep detailed records of
problem reports and the consequent changes to the system.
Other important documents include the ‘practices that are
followed by those who install and run the system in the
fidd.

Careful attention is paid to quality control in the form
of design reviews, informal code inspections, and an
independent test team.

Development work is done on the Sun platform,
although the SEs must spend a considerable amount of time
installing and running the software on various
configurations of the target hardware.

2.2 Studies

We began our study of work practices by finding out
what it isin general that SEs do when they do their work.
Our approach was fourfold, we conducted a web
guestionnaire, performed intensive shadowing of an
experienced SE who was a newcomer to this project,
performed various studies of a whole group, and collected
company-wide tool usage statistics. The methods ad
results of each of these studies is briefly presented in the
next four subsections (for greater detail see [3,4]). After
using the data to understand individual activities we then
analyzed it further to discover work patterns: Our
preliminary analyses of these is in section 2.2.6 and a
discussion of the tool that we developed using this
information is in section 3.

2.2.1 Questionnaire Study

We began our research by administering a web-based
guestionnaire (6 of the 13 SEs completed the questionnaire).
The questionnaire covered many different aspects of the
SES work. Here we report their answers to two questions
about what they spent their time doing.

The first question was open-ended, meaning that SEs
had to identify activities for themselves, rather than
choosing activities from a list. The activity listed by the
most SEs was reading documentation; many also reported
spending time looking at source code, writing
documentation, attending meetings, and writing source
code. Other activities included consulting, both answering
and asking questions, working with the hardware, testing,
designing, and fixing bugs.

The second question asked the SEs how they divided
their time: On average, 57% of their time was spent fixing
bugs, and 35% of their time making enhancements to the
system.

Due to the questionable validity of self-reports, we only
used the questionnaire to obtain arough initial indication of

what the SEs' work involved. The next two subsections of
the paper describe studies that allowed us to improve our
knowledge by obtaining direct observations.

2.2.2 Individual study

We have been following one SE longitudinally from the
time he first joined the company (November, 1996). For
the first six months, we spent about 1-1/2 hours per week
with B. However, as B has became more knowledgeable
about the system, we meet only once every 3 weeks. This
is because new things happen less frequently: B has fewer
experiences with new tools and at the same time is working
on larger problems that require long periods performing
tasks such as reading documentation or reproducing the
problem. B is an experienced SE (he was previously ateam-
leader), thus while he is new to the company, he is
certainly not new to ether maintenance or
telecommunications software.

Call trace Looking at an execution trace of the
program

Consult Either being consulted or consulting
someone else

Compile Linking or compiling a program

Configur- Entering and using the in-house

ation configuration management system

management (sometimesfor updating, and sometimes
to search for past updates)

Debug Using either the high-level or low-level
debugger

Document- Looking at documentation

ation

Edit Changing the source code

General software activities, such as
meetings, code reviews, etc.

M anagement

In-house Using one of the in-house tools,

tools primarily static software analysis tools

Notes Taking notes, or reading past notes

Search Using grep, in-house search tools, or
searching in an editor

Source Studying source code using editors or
codeviewers

Hardware Interacting with the hardware, e.g.,
loading software, running software,
configuring the hardware, etc.

UNI X Issuing a general Unix command, e.g. Is

Table 1: Categories of activities performed
by the SE we shadowed.

Our sessions with B consist of 3 distinct components.
First we talk about what has transpired since the last time
we met. This could be anything from code reviews, to
learning about a new tool, to reading documentation, etc.
Second, we ask B to look at a diagram of the system that he
previously constructed and ask him to modify it if it does
not reflect his current understanding of the system. Finally,
we ‘shadow’ B as he works for half an hour. In this paper,
we report the data from the shadowing.

We classified B’s shadowed events into the 14 distinct
categories described in Table 1. The data reported in this
paper reflects 14 shadowing sessions with B.

Searching and interacting with the hardware were the
most likely eventsto occur on adaily basis, each occurring
on 8 of the 14 days. B studied the source code using simple
editors on 6 of the days. The reason that B searched on more
days than he studied the source code is that searching
occurred when interacting with the hardware and debugging.
B only looked at documentation on 2 of the 14 days. This
is surprising because, at the time, B was till a relative
novice to the software system and it is commonly assumed
that novices will spend much of their time reading the
documentation to get ahandle on what they are doing. The
data show that this was not the strategy B pursued.
However, because B was a novice, it was not surprising to
find that editing code, compiling, and management were
each done on only 1 of the 14 days.

If instead of daily activities, we look at the overal
frequency of activities, we see that B searched more often
than he did anything else (37 times over the 14 days). He
also frequently studied the source code (33 times over the 14
days). While B was likely on any particular day to work
with the hardware, he did so on only 22 distinct occasions.

Thus overall, both in terms of daly activities ad
frequency of different activities, search for information
about the system, whether through grep, in-house search
tools, or within a particular editor or debugger, figured most
prominently in B’s attempts to comprehend the system. A
significant amount of B’'s effort was aso expended
interacting with the hardware and studying the source code.

2.2.3 Group study

In the last section, we discussed intensive studies of one
individual. To generalize our findings, we conducted severa
studies that focused on various aspects of the work of an
entire group of SEs.

We collected four types of data from the group. First,
we asked the SEs to draw a diagram or picture of their
current understanding of the system, a conceptua map, if
you will. Second, we conducted intensive interviews with
the SEs. Some of these asked about their work in generd,
while others focused on how they solved a rea problem
with the software. The latter generaly involved several 1-
hour interviews over the course of several days. Finally, we
spent one hour shadowing each SE as they went about their

work. This report focuses on this third type of data; the
shadowing data.

Eight group members participated in the shadowing
study. Their experience ranged from the most expert
member of the group (8 years) to the least experienced (6
months, a recent college graduate). All but one of the
shadowed subjects worked on the main controller of the
hardware. One of the subjects worked primarily on the
database component.

The subjects were expert in a wide variety of platforms
and languages, and had experience in both development ad
mai ntenance environments.

Like B's data, the shadowed events were classified
according to the 14 distinct categories described in Table 1.
356 distinct events were recorded.

All 8 SEslooked at the source, conducted a search, and
changed the source code at least once during the hour. Most
of the SEs also engaged at least once in severa other
activities, with 5 of the 8 SEs interacting with the
hardware, debugger, or the in-house tools. On the other
hand, only 3 SEs looked at a call trace, while only one SE
performed a management activity.

Of the total of 356 events (counted over the 8 SES),
issuing a Unix command was the most frequent activity,
occurring 54 times. A close second was studying the source
which was done 52 times. Interacting with the hardware (36
times) or the debugger (32 times), searching (31 times), and
changing the source code (30 times) were the next most
frequent activities. Configuration management, consulting,
compiling, and working with in-house tools were each done
about 20 times.

Surprisingly enough, reading the documentation,
although performed by 6 of the 8 SEs, accounted for only
12 separate events. Clearly, the act of looking at the
documentation is more sdlient in the SES minds (as
evidenced by the questionnaire daa) than its actua
occurrence would warrant.

SEs only occasionally wrote notes, looked at the call
trace or did management activities. This is not to say that
these events are not important, but merely that they did not
occur as frequently as other events.

As B did, members of the group frequently examined the
source code. Every SE in the group made at least one search
during their shadowing session, but search was less
prominent than in B’s activities. Search ranked as the most
frequent event type for B, while it was the 4th most
frequent for the group.

Code editing and compiling were more prominent
activities in the group data than in B’s data. This is
probably because B was still learning the system at the
time we shadowed him, so he was not yet in a position to
make many changes. This may aso explain the higher
incidence of working with the call trace in his data: doing
the latter may be effective in ganing an initia
understanding of a system.

Interestingly, in-house tools and documentation were
both relatively infrequent activities for both the group and
B.

The group data converge with B’s data to suggest that
looking and searching through the source are prominent
activities for SEs in attempting to comprehend a system.
Editing and compiling are also important. This concurs
with what we would expect in that their work revolves
around the source code.

2.2.4 Company Study

The fina study we report concerns company-wide tool
usage statistics. These data were obtained from the
company’s tool group. This group is responsible for
acquiring, updating, and maintaining the company’s tools.
Collecting usage statistics is part of their mission.

The data presented here represent one week of Sun tool
usage by 367 users in late May 1997. Note that this week
occurred before ‘vacation season,” so is fairly representative
of peak tool usage. There were 79,295 separate tool calls
logged from the Sun operating system.

Invocations of compilers occurred 32,422 times (41% of
all events recorded) due to regular automatic load-builds;
therefore we excluded this data from our studies.

When we factored compiling out, the overwhelming
finding from the company data is that search is done far
more often than any other activity. In fact, search accounts
for 21,146 events over the course of the week, or an average
of about 58 searches per individual user. Compression ad
un-compression tools are also used often (We never actually
observed anyone using these tools so we assume that they
are al'so mostly used by automated scripts).

The configuration management system was activated
2819 times, accounting for approximately 4% of al events.
At this company, the configuration management system is
central to the work process, both for retrieving files, filing
changes, and searching through past changes (along with
associated documentation).

Editors and viewers account for approximately 3190
events, or 4% of the total number of events. This low
frequency could be due to counting particularities that apply
only to editors. In the company tool data, an editor
command is counted only when the editor is opened. Once
an editor is open, it generally stays open, regardless of how
many changes are made, or how many files are viewed. In
contrast, in the shadowing data, an edit was recorded each
time the source was changed, and a source event was
counted each time the source was examined, whether the
editor was dready open or not. Consequently, it comes as
no surprise that in the shadowing data, edit and source
frequency is higher than it isin the company-wide data.

Again, the in-house tools are not used very frequently,
but that belies their importance. These tools are important
because they perform necessary functions that cannot be
performed by other tools.

Search isthe most frequently used tool at the company
wide level. Grep and its variants are the most frequently
used search tools, accounting for 21,117 separate
invocations. Clearly, search is an important aspect of SEs
work practices.

2.2.5 Synchronized shadowing to discover work
patterns

The above studies of SE work practices highlighted two
primary activities: search and navigation. In continuing our
research, we are focusing on these areas. In particular, we
areinterested in the recurring sequences of actions that SEs
follow to execute search, i.e.,, search work patterns (this
term is discussed in section 1.1.

To find work patterns, we implemented a methodology
we call synchronized shadowing. Here, two observers
shadow an individual SE at the same time. Each observer
records observations on their own laptop computer. The
clocks on the two computers are synchronized, so that the
two data sets can later be matched. One researcher records
the low-level work practices of the SE, such as ‘execute
grep’, ‘open an editor’, ‘look at the source’, etc.' The other
researcher has the SE “think-aloud” while working, ad
records the SE's immediate goals and whether and when
they are achieved. For example, the first researcher may
record that the SE executed grep, while the second researcher
would have recorded that the SE was looking for a variable,
looking for a constant, looking for a routine name, etc. The
high-level goals recorded are only those directly mentioned
by the SE; the very low-level goals are partly interpreted or
inferred from the sequences of actions and from the higher
level goals (see section 1.1).

To find the work patterns, then, the two data sets are
merged so that the goals can be matched up with the
specific actions that were taken to achieve them. Over time
and after studying many more SEs, we expect that certain
goals will always be matched with the same or very similar
actions to form work patterns.

We implemented the synchronized shadowing method
because we found that no other technique would work
effectively. A single researcher could not record both types
of information; videotaping was too time-consuming, ad
automated recording missed important data.

2.2.6 Work patterns of particular importance

During the course of our studies we began to notice
several important work patterns. We are still in the process
of extracting these patterns, but our preliminary attention
became focused on patterns common to severa SEs ad
having mechanical, time-consuming and/or inefficient
elements that could perhaps be automated.

! Unfortunately, this level of observation cannot be done by
automatic logging of keystrokes and mouse movements.

The following are four of the most important such
patterns:

1. Searching for some target string using grep,
successively opening each file that had grep ‘hits,
searching for the same target in the file, and then
studying the code around the hits. In most cases the grep
target was avery smple string and the search involved a
very large number of files, the SE was often forced to
wait for many seconds for the result, and some SEs
developed the habit of starting searches in the
background, and then performing some other task while
they waited for the search to compl ete.

2. Saving theresults of grep searches to act as checklists
for future work (either lists of places to study, or lists of
places where changes are needed), and then working
through the checklists. This pattern was fraught with
errors, however: On several occasions we observed SES
repeating searches because they could not find previous
results (e.g. they had scrolled too far off the top of the
screen).

3. Suspending an investigation of a checklist item to
perform some other search or study, then resuming work
at alater time. Thistask switching involved considerable
overhead, and it was hard for the SEs to keep their work
organized.

4. Jumping back and forth between tools, primarily Unix
command line (performing grep) to editor and back. This
jumping involved the use of cut and paste to transfer daa
and was frequently awkward.

The next section describes how we developed a tool that
helps SEs more effectively achieve the goals implicit in the
above patterns.

3. Developing atool using the results of
work practice studies

In this section, we discuss how we used work-practices
studies to inform the design of a software engineering tool.

Inlate 1995 we started our research project whose goal
was to discover techniques whereby SEs could more
effectively maintain large legacy systems.

3.1 Thefirst release

For the first release, we brainstormed a group of SEs for
their needs, and then designed, with their continued
involvement, a tool cdled SEE (Software Exploration
Environment); its main features were:

a) Hypertext-like abilities to select any word in the code,
and build a list of relevant information that describes that
word (e.g. a variable, a routine or even a word in
comments).

b) Abilities to build, in a hierarchical manner, a list of
items related to the file, routine, identifier etc. on the
screen.

Patwalin s Pwasin Desis ey
=100
My U Te o T e s

[

¥ v

€ rwenn) Ve Cpoow pan

Visual grep. Although the user can
perform useful queries with a combination
| of hypertext and relationship-expanding
that were available in the origina tool,
users persisted in using grep, jumping
from our first release to the command line
and back. In order to help users better
perform work patterns 1 and 4, therefore,
we integrated grep into tksee. There ae
three ways to access this functionality: 1)
Requesting an ‘ordinary’ grep whereby the
search hits are displayed as a fresh search
in the history hierarchy. 2) Selecting
some items in the bottom left pane ad
requesting agrep in each of these; the hits
being displayed indented below the places
where they were found in the bottom-left

Figure 1. An example of the Tksee main window.

Both of these facilities were ranked high in the
brainstorming sessions. They proved useful to the SEs (as
evidenced by ongoing use) and remain, in improved form,
in the current version.

3.2 Work studies based design: The second release

Our work practice studies proceeded in paralel with the
above, and have so far been underway for over a year. These
studies clearly could not inform tool design for the first
release since we had to amass data. We therefore used them
to develop the second rel ease.

We used the work patterns discussed in section 2.2.6 to
guide our tool design, and thus implemented the following
features in the second version of SEE. We call this tksee,
and a screen snapshot is shown as figure 1:

e Persistent hierarchical history>. This facility
automatically records the entire state of each exploration
and presents it to the user in a compact, but graphica
manner. It allows the user to jump among states or return
to earlier states, and thus facilitates work patterns 2 and 3.
Information recorded in each state includes the object the
SE was studying (right pane in figure 1), as well as the
exploration hierarchy — i.e. the path that led the SE to
this object (Ieft pane). Each time the SE starts a new
search, a new history record is crested (top pane). These
history records are themselves hierarchical. Any given
level of the hierarchy represents search tasks that the user
considers to be peers; if the user selects one of these
search records and performs new search work, then a lower
level in the hierarchy will be started.

N

Although a rudimentary version of history was available
in the original tool, it was little use since it was not
persistent nor automatic enough

pane. 3) Selecting (in the bottom-left
pane) an item that is the destination of a
relationship, and requesting that the places
in that item that establish the relationship
be highlighted as grep hits. In all three cases, the user can
select agrep hit and immediately see the context of the hit
in the right pane.

3.3 Conclusions from tool development

The second release of the tool has been eagerly adopted
by avariety of SEs. Thisis an achievement, sinceit is had
to encourage these people to adopt new techniques — many
of them have not even adopted emacs, and prefer to use
more primitive editors they know better.

We attribute our success to the following: a) we focused
on tasks that they do most frequently (i.e. search); b) we
developed tools that specifically helped with work patterns
that appeared cumbersome previoudly; ¢) we alowed them
to continue their existing work practices (e.g. use of grep),
rather than forcing them to adopt aradical new paradigm.

One criticism we have received about our research is that
there are dready commercia and freeware tools that
incorporate some of the facilities we developed. Well
known examples include Sniff+ and emacs. Our counter-
argument to this is to ask, why are those tools not being
used by our SES? We believe that our work-practices studies
alowed us to develop a tool that fits more precisely with
the SES' needs. The other tools either do not integrate all
the facilities neaded (especially the persistent hierarchical
history) or are overly complex.

4. Conclusions and future work

This paper has described experiences with severd
techniques that can help us to develop systems that are not
only usable, but are also used.

In our work practice studies, we first discovered what
our users did in broad terms using interviews, shadowing,

guestionnaires, etc. Then we focused on the most frequently
performed tasks to discover what we call work patterns.

We have also shown that by using the technique we call
synchronized shadowing, it is possible to gather
information about both activities and goals fairly
efficiently. The analysis of this data leads to the discovery
of work patterns that are most amenabl e to automation.

We will now continue our work-practices research and
perform tool development iteratively. We will study the
extent and manner with which the SEs use the facilities we
developed as aresult of thisresearch. We also plan to study
the work patterns of SEs in more depth as we amass more
observations.

Acknowledgments

This research is supported by NSERC and sponsored by
the Consortium for Software Engineering Research
(CSER). We would like to thank the SEs who participated
in our studies.

References

1

Beyer, H., & Holtzblatt, K., Apprenticing with the
customer. Communications of the ACM 38 (1995), 45-
52.

Blomberg, J., Suchman, L., & Trigg, R., Reflections
on a Work-oriented Design Project. Human Computer
Interaction 11, (1996), 237-265

Lethbridge, T., and Singer, J. (1997). Understanding
software maintenance tools. Some empirical research, in
Workshop on Empirical Sudies of Software
Maintenance, (Bari, Italy, October 1997), pp. 157-162..
Singer, J., Lethbridge, T., Vinson, N. and Anquetil N.
An Examination of Software Engineering Work
Practices, in Proceedings of CASCON ‘97 (Toronto,
November 1997).

Vicente, K and Pejtersen, A. Cognitive Work Analysis,
in press.

von Mayrhauser, A and & Vans, A., Program
Comprehension During Software Maintenance and
Evolution, Computer Aug. 1995, 44-55.

