
Palm OS ®

Programmer’s
Companion
Document Number 3004-003
Print Date 6/00



CONTRIBUTORS

Written by Christopher Bey, Elly Freeman, and Jean Ostrem
Production by <dot> PS document production services
Engineering contributions by David Fedor, Roger Flores, Steve Lemke, Bob Ebert, Ken Krugler, Bruce
Thompson, Jesse Donaldson, Tim Wiegman, Gavin Peacock, Ryan Robertson, and Waddah Kudaimi

Copyright © 1996 - 2000, Palm, Inc. All rights reserved. This documentation may be printed and copied
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS
SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLI-
GENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAM-
AGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF
INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION
WITH THIS DOCUMENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, More connected., Simply Palm, the Palm Comput-
ing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo are trademarks of Palm,
Inc. or its subsidiaries. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Palm, Inc.
5400 Bayfront Plaza
Santa Clara, CA 95052
USA

www.palm.com/devzone

Palm OS Programmer’s Companion
Document Number 3004-003
June 23, 2000
Document Number 3004-003



Table of Contents
 About This Document 11

Palm OS SDK Documentation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 11

What This Volume Contains  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 11

Conventions Used in This Guide  .   .   .   .   .   .   .   .   .   .   .   .   .   . 13

1 Programming Palm OS in a Nutshell 15
Why Programming for Palm OS Is Different   .   .   .   .   .   .   .   .   . 15

Screen Size    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 15

Quick Turnaround Expected .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 16

PC Connectivity  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 16

Input Methods .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 17

Power    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 17

Memory    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 17

File System   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 18

Backward Compatibility    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 18

Palm OS Programming Concepts  .   .   .   .   .   .   .   .   .   .   .   .   .   . 18

Programming Tools .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 20

Where to Go From Here  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 20

2 Good Design Practices 23
Designing Your Application  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 24

Integrating Programs With the Palm OS Environment .   .   .   . 24

Naming Conventions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 27

Achieving Optimum Performance   .   .   .   .   .   .   .   .   .   .   .   . 28

Assigning a Creator ID   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 29

Working With Databases   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 30

Writing Robust Code  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 30

Avoiding Potential Pitfalls .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 33

User Interface Guidelines   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 33

Understanding the Palm OS UI Design Philosophy .   .   .   .   . 34

Creating a Palm OS User Interface   .   .   .   .   .   .   .   .   .   .   .   . 36

Palm OS Resource Selection: List or Table?.   .   .   .   .   .   .   .   . 45

Localization Guidelines  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 45

Making Your Application Run on Different Devices .   .   .   .   .   . 46
Palm OS Programmer’s Companion 3



Running New Applications on an Older Device   .   .   .   .   .   . 47

Compiling Older Applications With The Latest SDK   .   .   .   . 48

3 Application Startup and Stop 49
Launch Codes and Launching an Application    .   .   .   .   .   .   .   . 49

Responding to Launch Codes    .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 50

Responding to Normal Launch.   .   .   .   .   .   .   .   .   .   .   .   .   . 53

Responding to Other Launch Codes    .   .   .   .   .   .   .   .   .   .   . 56

Launching Applications Programmatically .   .   .   .   .   .   .   .   .   . 58

Creating Your Own Launch Codes   .   .   .   .   .   .   .   .   .   .   .   .   . 59

Stopping an Application .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 59

Launch Code Summary  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 61

4 Event Loop 65
The Application Event Loop  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 67

Low-Level Event Management .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 71

Event Translation: Pen Strokes to Key Events.   .   .   .   .   .   .   . 71

Pen Queue Management   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 72

Key Queue Management   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 73

Auto-Off Control .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 74

System Event Manager Summary    .   .   .   .   .   .   .   .   .   .   .   . 75

5 User Interface 77
Palm OS Resource Summary .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 78

Drawing on the Palm OS Device   .   .   .   .   .   .   .   .   .   .   .   .   .   . 79

The Draw State    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 80

Drawing Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 81

Forms, Windows, and Dialogs   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 82

Alert Dialogs    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 83

Progress Dialogs  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 84

Controls .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 86

Buttons  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 86

Popup Trigger  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 87

Selector Trigger    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 88

Repeating Button.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 89

Push Buttons    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 90
4 Palm OS Programmer’s Companion



Check Boxes .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 91

Sliders and Feedback Sliders .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 92

Fields .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 97

Menus    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 99

Dynamic Menus  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101

Menu Shortcuts   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 102

Tables .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 104

Table Event   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 105

Lists    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 105

Categories .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 107

Initializing Categories in a Database   .   .   .   .   .   .   .   .   .   .   . 108

Initializing the Category Popup Trigger  .   .   .   .   .   .   .   .   .   . 111

Managing a Category Popup List .   .   .   .   .   .   .   .   .   .   .   .   . 112

The Default Application Category   .   .   .   .   .   .   .   .   .   .   .   . 115

Bitmaps  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 116

Versions of Bitmap Support   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 117

Drawing a Bitmap   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 118

Color Tables and Bitmaps  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 119

Labels .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 120

Scroll Bars .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 120

Custom UI Objects   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 122

Dynamic UI  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 125

Dynamic User Interface Functions   .   .   .   .   .   .   .   .   .   .   .   . 126

Color and Grayscale Support .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 128

Color Table   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 128

UI Color List.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 130

Insertion Point  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 132

Text .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 132

Working With Text As Strings   .   .   .   .   .   .   .   .   .   .   .   .   .   . 133

Fonts in Palm OS 3.0 and Later .   .   .   .   .   .   .   .   .   .   .   .   .   . 134

Receiving User Input   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 135

The Graffiti Manager  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 135

The Key Manager    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 137

The Pen Manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 138

Application Launcher .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 139
Palm OS Programmer’s Companion 5



Summary of User Interface API.   .   .   .   .   .   .   .   .   .   .   .   .   .   . 140

6 Memory 155
Introduction to Palm OS Memory Use .   .   .   .   .   .   .   .   .   .   .   . 155

Hardware Architecture  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 155

PC Connectivity  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 156

Memory Architecture  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 157

Heap Overview   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 161

The Memory Manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 164

Memory Manager Structures.   .   .   .   .   .   .   .   .   .   .   .   .   .   . 164

Using the Memory Manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 167

Optimizing Memory Manager Performance  .   .   .   .   .   .   .   . 170

Summary of Memory Management  .   .   .   .   .   .   .   .   .   .   .   .   . 171

7 Files and Databases 173
The Data Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 173

Records and Databases  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 174

Structure of a Database Header    .   .   .   .   .   .   .   .   .   .   .   .   . 175

Using the Data Manager    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 177

The Resource Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 180

Structure of a Resource Database Header   .   .   .   .   .   .   .   .   . 180

Using the Resource Manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   . 181

File Streaming Application Program Interface    .   .   .   .   .   .   .   . 183

Using the File Streaming API    .   .   .   .   .   .   .   .   .   .   .   .   .   . 183

Summary of Files and Databases  .   .   .   .   .   .   .   .   .   .   .   .   .   . 185

8 Palm System Features 189
Alarms   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 189

Setting an Alarm .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 190

Alarm Scenario    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 192

Setting a Procedure Alarm.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 193

Features .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 195

The System Version Feature  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 196

Application-Defined Features   .   .   .   .   .   .   .   .   .   .   .   .   .   . 197

Using the Feature Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 197

Feature Memory  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 198
6 Palm OS Programmer’s Companion



Notifications .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 200

Registering for a Notification    .   .   .   .   .   .   .   .   .   .   .   .   .   . 201

Writing a Notification Handler .   .   .   .   .   .   .   .   .   .   .   .   .   . 204

Sleep and Wake Notifications   .   .   .   .   .   .   .   .   .   .   .   .   .   . 206

Sound .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 207

Synchronous and Asynchronous Sound .   .   .   .   .   .   .   .   .   . 209

Using the Sound Manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 209

Sound Preferences Compatibility Information   .   .   .   .   .   .   . 214

System Boot and Reset    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 218

Soft Reset  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 218

Soft Reset + Up Arrow   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 219

Hard Reset    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 219

System Reset Calls  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 220

Hardware Interaction  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 220

Palm OS Power Modes  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 220

Guidelines for Application Developers   .   .   .   .   .   .   .   .   .   . 222

Power Management Calls  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 222

The Microkernel   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 223

Retrieving the ROM Serial Number .   .   .   .   .   .   .   .   .   .   .   .   . 224

Time   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 226

Using Real-Time Clock Functions.   .   .   .   .   .   .   .   .   .   .   .   . 227

Using System Ticks Functions  .   .   .   .   .   .   .   .   .   .   .   .   .   . 227

Floating-Point   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 228

Using Floating Point Arithmetic   .   .   .   .   .   .   .   .   .   .   .   .   . 228

Using 1.0 Floating-Point Functionality    .   .   .   .   .   .   .   .   .   . 229

Summary of System Features.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 229

9 Serial Communication 233
Serial Hardware   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 233

Byte Ordering   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 234

Serial Communications Architecture Hierarchy .   .   .   .   .   .   .   . 235

The Serial Manager  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 236

Using the Serial Manager  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 237

The New Serial Manager    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 240

Checking for the New Serial Manager .   .   .   .   .   .   .   .   .   .   . 241
Palm OS Programmer’s Companion 7



What's New About the New Serial Manager .   .   .   .   .   .   .   . 241

About the New Serial Manager.   .   .   .   .   .   .   .   .   .   .   .   .   . 242

Using the New Serial Manager .   .   .   .   .   .   .   .   .   .   .   .   .   . 243

New Serial Manager Example  .   .   .   .   .   .   .   .   .   .   .   .   .   . 248

Writing a Serial or Virtual Device Driver.   .   .   .   .   .   .   .   .   . 251

The Connection Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 254

The Serial Link Protocol  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 255

SLP Packet Structures .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 255

Transmitting an SLP Packet   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 258

Receiving an SLP Packet    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 258

The Serial Link Manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 258

Using the Serial Link Manager .   .   .   .   .   .   .   .   .   .   .   .   .   . 259

Summary of Serial Communications    .   .   .   .   .   .   .   .   .   .   .   . 263

10 Beaming (Infrared Communication) 265
Exchange Manager  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 265

Overview  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 266

Exchange Manager and Launch Codes   .   .   .   .   .   .   .   .   .   . 267

IR Library  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 269

IrDA Stack    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 269

Accessing the IR Library    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 271

Summary of Beaming  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 271

11 Network Communication 273
Net Library   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 273

About the Net Library    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 274

Net Library Usage Steps.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 277

Obtaining the Net Library’s Reference Number    .   .   .   .   .   . 278

Setting Up Berkeley Socket API    .   .   .   .   .   .   .   .   .   .   .   .   . 279

Setup and Configuration Calls  .   .   .   .   .   .   .   .   .   .   .   .   .   . 279

Opening the Net Library   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 284

Closing the Net Library .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 286

Version Checking.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 287

Network I/O and Utility Calls .   .   .   .   .   .   .   .   .   .   .   .   .   . 287

Berkeley Sockets API Functions   .   .   .   .   .   .   .   .   .   .   .   .   . 288

Extending the Network Login Script Support    .   .   .   .   .   .   . 295
8 Palm OS Programmer’s Companion



Internet Library    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 300

System Requirements .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 301

Initialization and Setup  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 302

Accessing Web Pages  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 302

Asynchronous Operation  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 303

Using the Low Level Calls .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 305

Cache Overview  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 305

Internet Library Network Configurations   .   .   .   .   .   .   .   .   . 306

Summary of Network Communication    .   .   .   .   .   .   .   .   .   .   . 308

12 Internet and Messaging Applications 311
Overview of the Palm.Net System    .   .   .   .   .   .   .   .   .   .   .   .   . 312

Palm Query Applications  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 313

Palm.Net System Overview  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 314

System Version Checking   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 317

Using Clipper to Display Information  .   .   .   .   .   .   .   .   .   .   .   . 318

Launching Other Applications from Clipper  .   .   .   .   .   .   .   .   . 319

Sending Messages    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 320

New keyDownEvent Key Codes   .   .   .   .   .   .   .   .   .   .   .   .   .   . 321

Over the Air Characters  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 322

13 Localized Applications 325
Localization Guidelines  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 326

Using Overlays to Localize Resources  .   .   .   .   .   .   .   .   .   .   .   . 326

Text Manager and International Manager   .   .   .   .   .   .   .   .   .   . 329

Characters .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 331

Declaring Character Variables  .   .   .   .   .   .   .   .   .   .   .   .   .   . 331

Using Character Constants    .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 332

Missing and Invalid Characters    .   .   .   .   .   .   .   .   .   .   .   .   . 332

Retrieving a Character’s Attributes .   .   .   .   .   .   .   .   .   .   .   . 333

Virtual Characters   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 334

Retrieving the Character Encoding  .   .   .   .   .   .   .   .   .   .   .   . 335

Strings    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 336

Manipulating Strings  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 337

Performing String Pointer Manipulation.   .   .   .   .   .   .   .   .   . 338

Truncating Displayed Text .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 339
Palm OS Programmer’s Companion 9



Comparing Strings  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 339

Global Find  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 340

Dynamically Determining a String’s Contents   .   .   .   .   .   .   . 342

Dates  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 344

Numbers   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 345

Compatibility Information .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 346

Notes on the Japanese Implementation    .   .   .   .   .   .   .   .   .   .   . 347

Japanese Character Encoding   .   .   .   .   .   .   .   .   .   .   .   .   .   . 347

Japanese Character Input   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 348

Displaying Japanese Strings on UI Objects .   .   .   .   .   .   .   .   . 348

Displaying Error Messages    .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 349

Summary of Localization   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 349

14 Debugging Strategies 351
Displaying Development Errors   .   .   .   .   .   .   .   .   .   .   .   .   . 351

Using the Error Manager Macros .   .   .   .   .   .   .   .   .   .   .   .   . 352

Understanding the Try-and-Catch Mechanism  .   .   .   .   .   .   . 353

Using the Try and Catch Mechanism   .   .   .   .   .   .   .   .   .   .   . 354

Summary of Debugging API .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 355

15 Standard IO Applications 357
Creating a Standard IO Application .   .   .   .   .   .   .   .   .   .   .   .   . 358

Creating a Standard IO Provider Application .   .   .   .   .   .   .   .   . 359

Summary of Standard IO   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 362

 Index 363
10 Palm OS Programmer’s Companion



About This
Document
Palm OS Programmer’s Companion is part of the Palm OS® Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document and what conventions are used.

Palm OS SDK Documentation
The following documents are part of the SDK:

What This Volume Contains
This volume is designed for random access. That is, you can read
any chapter in any order. You don’t necessarily have to read some
before others, though the first few chapters are designed for
programmers who are new to the Palm OS. The first four chapters

Document Description

Palm OS SDK
Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion

A guide to application programming for the Palm OS. This
volume contains conceptual and “how-to” information that
complements the Reference.

CodeWarrior
Constructor for the
Palm OS Platform

A guide to using CodeWarrior Constructor to create Palm
OS resource files.

Palm OS Programming
Development Tools
Guide

A guide to writing and debugging Palm OS applications
with the various tools available.
Palm OS Programmer’s Companion 11



About This Document
What This Volume Contains
help you learn necessary tasks and possible features for your
application.

Note that each chapter ends with a list of hypertext links into the
relevant function descriptions in the Reference book.

Here is an overview of this volume:

• Chapter 1, “Programming Palm OS in a Nutshell.” Provides
new Palm OS programmers with a summary of what tasks
and tools are involved in writing a Palm application and
provides pointers to where to look for more information.

• Chapter 2, “Good Design Practices.” Provides new Palm OS
programmers with guidelines for creating a well-designed
Palm application with a well-designed user interface.

• Chapter 3, “Application Startup and Stop.” Describes how to
use and respond to launch codes to start and stop an
application and perform other actions. Describes how to
implement the PilotMain  function, the entry point for all
applications.

• Chapter 4, “Event Loop.” Describes the event manager,
events, the event loop, and how to implement the event loop
in your application. Discusses how your application and the
system interact to handle events.

• Chapter 5, “User Interface.” Describes the user interface
elements that you can use in your application and how to use
them. Also covers related topics such as drawing, dynamic
UI, receiving user input, and the application launcher.

• Chapter 6, “Memory.” Describes the memory architecture,
memory use on the Palm devices, and the memory manager.

• Chapter 7, “Files and Databases.” Describes the data storage
system, the data manager, resource manager, and the file
streaming API.

• Chapter 8, “Palm System Features.” Describes features
unique to the Palm hardware and OS such as alarms, the
feature manager, preferences, the sound manager, system
boot and reset, the microkernal, time, and floating point
arithmetic.

• Chapter 9, “Serial Communication.” Describes the serial port
hardware, the serial communications architecture, the serial
link protocol, and the various serial communication
managers.
12 Palm OS Programmer’s Companion



About This Document
Conventions Used in This Guide
• Chapter 10, “Beaming (Infrared Communication).” Describes
the two facilities for beaming, or IR communication: the
exchange manager and the IR library.

• Chapter 11, “Network Communication.” Describes the net
library and Internet library and how to perform
communications with networking protocols such as TCP/IP
and UDP. The net library API maps very closely to the
Berkeley UNIX sockets API.

• Chapter 12, “Internet and Messaging Applications.”
Describes the Palm.Net system and how to use the Clipper
and iMessenger applications to access and send information

using the wireless capabilities of the Palm VII™ device.

• Chapter 13, “Localized Applications.” Discusses how to
make your application localizable. Includes information on
the text and international managers, as well as dealing with
alternative character encodings, strings, numbers, and dates.

• Chapter 14, “Debugging Strategies.” Describes
programmatic approaches to debugging your application;
that is, using the error manager and the Palm OS try and
catch mechanism for debugging.

• Chapter 15, “Standard IO Applications.” Describes how to
create a command line application. On Palm OS, command
line applications are typically used by developers for
debugging purposes only.

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.
Palm OS Programmer’s Companion 13





1
Programming Palm
OS in a Nutshell
This chapter is the place to start if you’re new to Palm
programming. It summarizes what’s unique about writing
applications for Palm OS® platform devices and tells you where to
go for more in-depth information. It covers:

• Why Programming for Palm OS Is Different

• Palm OS Programming Concepts

• Programming Tools

• Where to Go From Here

Read this chapter for a high-level introduction to Palm
programming. The rest of this book provides the details.

Why Programming for Palm OS Is Different
Like most programmers, you have probably written a desktop
application—an application that is run on a desktop computer such
as a PC or a Macintosh computer. Writing applications for
handhelds, specifically Palm OS platform devices, is a bit different
from writing desktop applications because the Palm OS platform
device is designed differently than a desktop computer. Also, users
simply interact with the device differently than they do desktop
computers.

This section describes how these differences affect the design of a
Palm OS® application.

Screen Size
The Palm OS device’s screen is only 160x160 pixels, so the amount
of information you can display at one time is limited.
Palm OS Programmer’s Companion 15



Programming Palm OS in a Nutshel l
Why Programming for Palm OS Is Different
For this reason, you must design your user interface carefully with
different priorities and goals than are used for large screens. Strive
for a balance between providing enough information and
overcrowding the screen. See the section “User Interface
Guidelines” in the chapter “Good Design Practices” for more
detailed guidelines on designing the user interface.

Note that screen sizes of future Palm OS devices may vary.

Quick Turnaround Expected
On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for an
extended amount of time.

By contrast, the average Palm user uses a Palm application 15 to 20
times per day for much briefer periods of time, usually just a few
seconds. Speed is therefore a critical design objective for hand-held
organizers and is not limited to execution speed of the code. The
total time needed to navigate, select, and execute commands can
have a big impact on overall efficiency. (Also consider that the Palm
OS does not provide a wait cursor.)

To maximize performance, the user interface should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the user interface of your application is
consistent with other applications on the device so users work with
familiar patterns.

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the applications resident
on the device (MemoPad, Address Book, etc.). These guidelines are
summarized in the chapter “Good Design Practices” in this book.

PC Connectivity
PC connectivity is an integral component of the Palm OS platform
device. The device comes with a cradle that connects to a desktop
PC and with software for the PC that provides “one-button” backup
and synchronization of all data on the device with the user’s PC.
16 Palm OS Programmer’s Companion



Programming Palm OS in a Nutshel l
Why Programming for Palm OS Is Different
Many Palm OS applications have a corresponding application on
the desktop. To share data between the device’s application and the
desktop’s application, you must write a conduit. A conduit is a
plug-in to the HotSync® technology that runs when you press the
HotSync button. A conduit synchronizes data between the
application on the desktop and the application on the hand-held
device. To write a conduit, you use the Conduit SDK, which
provides its own documentation.

Input Methods
Handheld users don’t have a keyboard or mouse. Users enter data
into the device using a pen. They can either write Graffiti® strokes or
use the keyboard dialog provided on the device.

While Graffiti strokes and the keyboard dialog are useful ways of
entering data, they are not as convenient as using the full-sized
desktop computer with its keyboard and mouse. Therefore, you
should not require users to enter a lot of data on the device itself.

Power
The Palm OS platform device runs on batteries and thus does not
have the same processing power as a desktop PC. It is intended as a
satellite viewer for corresponding desktop applications.

If your application needs to perform a computationally intensive
task, you should implement that task in the desktop application
instead of the device application.

Memory
The Palm OS device has limited heap space and storage space.
Different versions of the device have between 512K and 8MB total of
dynamic memory and storage available. The device does not have a
disk drive or PCMCIA support.

Because of the limited space and power, optimization is critical. To
make your application as fast and efficient as possible, optimize for
heap space first, speed second, code size third.
Palm OS Programmer’s Companion 17



Programming Palm OS in a Nutshel l
Palm OS Programming Concepts
File System
Because of the limited storage space, and to make synchronization
with the desktop computer more efficient, Palm OS does not use a
traditional file system. You store data in memory chunks called
records, which are grouped into databases. A database is analogous
to a file. The difference is that data is broken down into multiple
records instead of being stored in one contiguous chunk. To save
space, you edit a database in place in memory instead of creating it
in RAM and then writing it out to storage.

Backward Compatibility
Different versions of the Palm OS platform device are available, and
each runs a different version of the Palm OS. Users are not expected
to upgrade their versions of the Palm OS as rapidly as they would
an operating system on a desktop computer. Updates to the OS are
designed in such a way that you can easily maintain backward
compatibility with previous versions of the OS, and thus, your
application is available to more users. See “Making Your
Application Run on Different Devices” in the chapter “Good Design
Practices” for details.

Palm OS Programming Concepts
Palm OS applications are generally single-threaded, event-driven
programs. Only one program runs at a time. To successfully build a
Palm OS application, you have to understand how the system itself
is structured and how to structure your application.

• Each application has a PilotMain  function that is
equivalent to main in C programs. To launch an application,
the system calls PilotMain and sends it a launch code. The
launch code may specify that the application is to become
active and display its user interface (called a normal launch),
or it may specify that the application should simply perform
a small task and exit without displaying its user interface.

The sole purpose of the PilotMain  function is to receive
launch codes and respond to them. (See Chapter 3,
“Application Startup and Stop.”)
18 Palm OS Programmer’s Companion



Programming Palm OS in a Nutshel l
Palm OS Programming Concepts
• Palm OS is an event-based operating system, so Palm OS
applications contain an event loop; however, this event loop
is only started in response to the normal launch. Your
application may perform work outside the event loop in
response to other launch codes. Chapter 4, “Event Loop,”
describes the main event loop.

• Most Palm OS applications contain a user interface made up
of forms, which are analogous to windows in a desktop
application. The user interface may contain both predefined
UI elements (sometimes referred to as UI objects), and
custom UI elements. (See Chapter 5, “User Interface.”)

• All applications should use the memory and data
management facilities provided by the system. (See Chapter
6, “Memory.” and Chapter 7, “Files and Databases.”)

• You implement an application’s features by calling Palm OS
functions. Palm OS consists of several managers, which are
groups of functions that work together to implement a
feature. As a rule, all functions that belong to one manager
use the same prefix and work together to implement a certain
aspect of functionality.

Managers are available to, for example, generate sounds,
send alarms, perform network communication, and beam
information through an infrared port. A good way to find out
the capabilities of the Palm OS is to scan the Table of
Contents of this guide.

IMPORTANT: The ANSI C libraries are not part of the Palm
development platform. In many cases, you can perform the same
function using a Palm OS API call as you can with a call to a
ANSI C function. For example, the Palm OS provides a string
manager that performs many of the string functions you’d expect
to be able to perform in an ANSI C program. If you do use a
standard C function, the code for the function is linked into your
application and results in a bigger executable.
Palm OS Programmer’s Companion 19



Programming Palm OS in a Nutshel l
Programming Tools
Programming Tools
Several tools are available that help you build, test, and debug Palm
OS applications. The most widely used tool is the CodeWarrior
Interactive Development Environment (IDE) from 3Com®

Corporation. Documentation for the CodeWarrior IDE is provided
with CodeWarrior. (See http://www.palm.com  for information
about other development tools.)

As with most applications, the user interface is generally stored in
one or more resource files. You use the Palm OS Constructor to
create these resources. To learn how, refer to the Constructor
documentation.

To debug and test your application, there are several tools available:

• The CodeWarrior Debugger handles source-level debugging.
You can use it with an application running on the Palm OS
device, or you can use it in conjunction with one of the other
debugging tools below.

• The Palm OS Emulator (POSE) tests your application on the
desktop computer before downloading it onto the device.

• On the Macintosh, you can build a Simulator version of your
application to test it. This is a standalone Mac OS application
that runs your Palm OS application on a Macintosh
computer.

• The Palm Debugger is an assembly-level tool. You can also
use it to enter commands directly to the Palm device.

The book Palm OS Programming Development Tools Guide describes
the Palm-provided debugging tools available on your development
platform. For CodeWarrior Debugger documentation, refer to the
CodeWarrior CD.

Where to Go From Here
This chapter provided you only with a general outline of the issues
involved in writing a Palm OS application. To learn the specifics,
refer to the following resources:
20 Palm OS Programmer’s Companion



Programming Palm OS in a Nutshel l
Where to Go From Here
• This book

The rest of this book provides details on how to implement
common application features using the Palm OS SDK. If
you’re new to Palm OS programming, you need to read the
next three chapters to learn the principles of Palm OS
application and UI design, how to implement the main
function, and how to implement the standard event loop. The
remaining chapters you can read on an as-needed basis.

• Example applications

The actual source code for the applications on the Palm OS
device is included as examples on your SDK CD. The code
can be a valuable aid when you develop your own program.
The software development kit provides a royalty-free license
that permits you to use any or all of the source code from the
examples in your application.

• Palm OS Programming Development Tools Guide

The Palm OS Programming Development Tools Guide provides
more details on using the tools to debug programs. (You
might also be interested in the “Debugging Strategies”
chapter in this book, which describes programmatic
debugging solutions.)

• Palm OS SDK Reference

The reference book provides the details on all of the public
data structures and API calls.

• Conduit Development Kits and documentation

If you need to write a conduit for your application, see the
documentation provided with the Conduit Development
Kits.
Palm OS Programmer’s Companion 21





2
Good Design
Practices
This chapter helps you design an application that’s fast, robust, and
consistent with other applications on the device. The previous
chapter described at a very high level the sorts of issues involved
with writing a Palm OS® application. This chapter goes into much
more detail about what is appropriate application design and user
interface design. Its focus is how to:

• Avoid potential problems

• Make your application integrate well with others

• Achieve the best performance possible

• Localize with the minimum amount of work

• Maintain backward compatibility

The information was collected from engineers, testers, and other
experts who designed, developed, and tested the four applications
shipped with the first Palm OS device.

Paying attention to user interface guidelines and, if applicable, to
localization guidelines early in your development cycle will save
you time and trouble later. However, there’s a lot to digest here. You
may want to revisit this chapter from time to time to make sure you
haven’t forgotten anything.

This chapter discusses these topics:

• Designing Your Application

• User Interface Guidelines

• Localization Guidelines

• Making Your Application Run on Different Devices
Palm OS Programmer’s Companion 23



Good Design Pract ices
Designing Your Application
NOTE: Be sure to read the “Avoiding Potential Pitfalls” and
“Writing Robust Code” sections for information on the problems
developers encounter most frequently.

Designing Your Application
This section provides Palm OS application design guidelines. It
discusses these topics:

• Integrating Programs With the Palm OS Environment

• Naming Conventions

• Achieving Optimum Performance

• Assigning a Creator ID

• Working With Databases

• Writing Robust Code

• Avoiding Potential Pitfalls

Integrating Programs With the Palm OS
Environment
When users work with a Palm OS application, they expect to be able
to switch to other applications, have access to Graffiti® and the on-
screen keyboard, access information with the global find, receive
alarms, and so on. Your application will integrate well with others if
you follow the guidelines in this section. Integrate with the system
software as follows:

• Handle sysAppLaunchCmdNormalLaunch

• Handle or ignore other application launch codes as
appropriate. For more information, see the next chapter,
Chapter 3, “Application Startup and Stop.”

• Handle system preferences properly. System preferences
determine the display of

– Date formats

– Time formats
24 Palm OS Programmer’s Companion



Good Design Pract ices
Designing Your Application
– Number formats

– First day of week (Sunday or Monday)

Be sure your application uses the system preferences for
numeric formats, date, time, and start day of week.

• Allow the system to post these messages:

– alarms

– low-battery warnings

– system messages during synchronization

• Be sure your application does not obscure or change the
Graffiti area, silk-screened buttons, and power button.

• Don’t obscure Graffiti shift indicators.

In addition, follow these rules:

• Store state information in the application preferences
database, not in the application record database. Call
PrefGetAppPreferences  and
PrefSetAppPreferences to save and restore preferences.
This is important if your application returns to the last
displayed view by default.

• If your application uses the serial port, be sure to free the port

when you no longer need it so that the HotSync® application
can use it.

• Ensure that your application properly handles the global
find. Generally, searches and sorts aren’t case sensitive.

• If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

• The application name is defined in two ways:

The application name (required) is specified in the PalmRez
panel of your CodeWarrior project and used by HotSync, the
About box, the Memory display, and the database header.

– The application icon name (optional) is a string resource
in the application’s resource file. It is used by the launcher
screen and in the Button Assignment preferences panel
Palm OS Programmer’s Companion 25



Good Design Pract ices
Designing Your Application
(available in OS versions 2.0 and later). You assign the
name using the Constructor Project Settings panel.

Using the icon name is useful if you plan to localize your
application.

Note: If you use an application icon name, make it short!

• Together with the application name, each application
displays a application icon in the launcher.

Your applications needs to have two icons:

– A large icon of type tAIB , with an ID of 1000. For
compatibility with 2.0 devices, this icon should be 22 x 32
pixels; if your application only runs on older devices, you
can make this icon 22 x 22 pixels.

– A smaller icon, also of type tAIB , with an ID of 1001. This
icon should be 15 x 9 pixels.

NOTE: The Constructor program supplied with Palm OS
versions 3.5 and later allows you to create an Application Icon
Family. You should not select the App Icon or Multi-bit Icon
categories in this Constructor.

• Follow the guidelines listed in User Interface Guidelines and
pay special attention to these points:

– Ensure that the different user input modes (e.g., Graffiti
and keyboard) are available for each field.

– Ensure that menu items work with shortcuts as
advertised.

– Put limits on the length of fields and test them.

– Ensure that any growable control, such as the launcher
window or the menus, scrolls correctly.

• Ensure that your application properly handles system
messages during and after synchronization.

• Ensure that deleted records are not displayed.
26 Palm OS Programmer’s Companion



Good Design Pract ices
Designing Your Application
• Ensure that your application doesn’t exceed the maximum
number of categories: 15 categories and the obligatory
category “Unfiled” for a total of 16.

• Ensure that your application uses a consistent default state
when the user enters it:

– Some applications have a fixed default; for example, the
Date Book always displays the current day when
launched.

– Other applications return to the place the user exited last.
In that case, remember to provide a default if that place is
no longer available. Because of HotSync and Preferences,
don’t assume the application data is the same as it was
when the user looked at it last.

• If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.

Naming Conventions
The following conventions are used throughout the Palm OS API:

• Functions start with a capital letter.

• All functions belonging to a particular manager start with a
two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the feature manager.

• Events and other constants start with a lowercase letter.

• Structure elements start with a lowercase letter.

• Global variables start with a capital letter.

• Typedefs start with a capital letter and end with “Type” (for
example, DateFormatType , found in DateTime.h ).

• Macintosh ResEdit resource types usually start with a
lowercase letter followed by three capital letters, for example
tSTR or tTBL. (Customized Macintosh resources provided
with your developer package are all uppercase, for example,
MENU. Some resources, such as Talt, don’t follow the
conventions.)

• Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:
Palm OS Programmer’s Companion 27



Good Design Pract ices
Designing Your Application
enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj};

typedef enum formObjects FormObjectKind;

Achieving Optimum Performance
Because the Palm OS device has limited heap space and storage,
optimization is critical. The Palm OS device currently has no wait
cursor, so users will expect rapid response. Test for performance.
Launching, switching, and finding should be fast.

To make your application as fast and efficient as possible, optimize
for heap space first, speed second, code size third.

Follow these guidelines to optimize memory use:

• Allocate handles for your memory to avoid heap
fragmentation.

• Sort on demand; don’t keep different sort lists around. This
makes your program simpler and requires less storage.

• Dynamic memory is a potential bottleneck. Don’t put large
structures on the stack.

• Arrange subroutines within the application to avoid 32K
jumps.

• To have your application run well within the constraints of
the limited dynamic heap, follow these guidelines:

– Allocate memory chunks instead of using global variables
where possible.
28 Palm OS Programmer’s Companion



Good Design Pract ices
Designing Your Application
– Switch from one UI form to another instead of stacking
up dialog boxes.

– Edit database records in place; don’t make extra copies on
the dynamic heap.

• Avoid placing large amounts of data on the stack. Heap
corruption is hard to debug. Global variables are preferable
to local variables (however, chunks are preferable to global
variables). Your application only has from 2K or 4K of stack
space depending on the system software version.

Assigning a Creator ID
Each Palm OS application has a distinct creator ID. A creator ID is a
4-byte value used to tie together all the databases related to the
application.

Creator IDs are unique to the application, not the creator of the
application. Each database on the Palm device has an application
value and a type. The type value should be set to
sysFileTApplication  for the executable’s database and can be
set to any value for other databases associated with an application.

Creator IDs need to be either all caps or mixed case. The Palm OS
creator IDs differ from the creator ID and type that appear in the
CodeWarrior Project Settings dialog boxes.

The creator ID for a Palm OS application is assigned in the PalmRez
Project Settings panel.

• The Type should be set to APPL. Type is a 4-byte value.

• For information about creator IDs, and to register a creator
ID, see this web page:

http://www.palm.com/devzone/crid/cridsub.html

The system uses the creator ID in various ways:

• Creator ID and type is used by the system launcher window
to determine which databases are applications that should be
displayed for selection.

• The memory application uses a creator ID and type to
determine names of applications for display and to calculate
total memory used by an application.
Palm OS Programmer’s Companion 29



Good Design Pract ices
Designing Your Application
Working With Databases
Working properly with databases makes your application run faster
and synchronize without problems. Follow these suggestions:

• When the user deletes a record, call DmDeleteRecord  to
remove all data from the record, not DmRemoveRecord to
remove the record itself. That way, the desktop application
can retrieve the information that the record is deleted the
next time there is a HotSync.

Note: If your application doesn’t have an associated conduit,
call DmRemoveRecord to completely remove the record.

• Keep data in database records compact. To avoid
performance problems, Palm OS databases are not
compressed, but all data are tightly packed. This pays off for
storage and during HotSync.

• All records in a database should be of the same type and
format. This is not a requirement, but is highly recommended
to avoid processing overhead.

• Be sure your application modifies the flags in the database
header appropriately when the user deletes or otherwise
modifies information. This flag modification is only required
if you’re synchronizing with the Palm PIM applications.

• Don’t display deleted records.

• Call DmSetDatabaseInfo  when creating a database to
assign a version number to your application. Databases
default to version 0 if the version isn’t explicitly set.

• Call DmDatabaseInfo  to check the database version at
application start-up.

Writing Robust Code
To make your programs more robust and to increase their
compatibility with the next generation of Palm OS products, it is
strongly recommended that you follow the guidelines and practices
outlined in this section.

• Check assumptions

You can write defensive code by adding frequent calls to the
ErrNonFatalDisplayIf  function, which enables your
30 Palm OS Programmer’s Companion



Good Design Pract ices
Designing Your Application
debug builds to check assumptions. Many bugs are caught in
this way, and these “extra” calls don’t weigh down your
shipping application. You can keep more important checks in
the release builds by using the ErrFatalDisplayIf
function.

• Avoid continual polling

To conserve the battery, avoid continual polling. If your
application is in a wait loop, poll at short intervals (for
example, every tenth of a second) instead. The event loop of
the Hardball example application included with your Palm
OS SDK illustrates how to do this.

• Avoid reading and writing to NULL (or low memory)

When calling functions that allocate memory (MemSet,
MemMove and similar functions) make sure that the pointers
they return are non-NULL. (If you can do better validation
than that, so much the better.) Also check that pointers your
code obtains from structures or other function calls are not
NULL. Consider adding to your debug build a #define  that
overrides MemMove (and similar functions) with a version
that validates the arguments passed to it.

• Use dynamic heap space frugally

It is important not to use the extra dynamic heap space
available on Palm units running 2.0 and higher unless it is
truly necessary to do so. Wasteful use of heap space may
limit your application to running only on the latest devices—
which prevents it from running on the very large number of
units already in the marketplace.

Note that some system services, such as the IrDA stack or the
Find window, can require additional memory while your
application is running; for example, if the unit starts to
receive a beam or other external input, the system may need
to allocate additional heap space for the incoming data. Don’t
use all available dynamic memory just because it’s there;
instead, consider using the storage heap for working with
large amounts of temporary data.
Palm OS Programmer’s Companion 31



Good Design Pract ices
Designing Your Application
• Check result codes when allocating memory

Because future devices may have larger or smaller amounts
of available memory, it is always a good idea to check result
codes carefully when allocating memory. It’s also good
practice to use the storage heap (and possibly file streams) to
work with large objects.

• Avoid allocating zero-length objects

It’s not valid to allocate a zero-byte buffer, or to resize a
buffer to zero bytes. Palm OS 2.0 and previous releases
allowed this practice, but future revisions of the OS may not
permit zero-length objects.

• Avoid making assumptions about the screen

The location of the screen buffer, its size, and the number of
pixels per bit aren’t set in stone—they might well change.
Don’t hack around the windowing and drawing functions. If
you are going to hack the hardware to circumvent the APIs,
save the state and return the system to that saved state when
you quit.

• Don’t access globals or hardware directly

Global variables and their locations can change; to avoid
mishaps, use the documented API functions and disable your
application if it is run on anything but a tested version of the
OS. Future devices might run on a different processor than
the current one.

Similarly, don’t hardcode references to cards. Although
current Palm OS hardware provides only a single card slot,
this may not always be the case. Thus, when calling functions
that manipulate cards, such as database manager and file
streaming functions, pass a variable that references the target
card, rather than passing a hardcoded reference to card 0.

• Built-in applications can change

The format and size of the preferences (and data) for the
built-in applications is subject to change. Write your code
defensively, and consider disabling your application if it is
run on an untested version of the OS.
32 Palm OS Programmer’s Companion



Good Design Pract ices
User Interface Guidelines
Avoiding Potential Pitfalls
Certain problems are encountered by application developers again
and again. To avoid them, ask yourself these questions:

• Do you have a Creator ID for your application?

Each application (not just each company) has to have a
Creator ID. Note that the Creator ID is only needed for the
application (database of type APPL) not for all other
databases.

• Did you use C library calls in your application? If you did,
change them to corresponding Palm OS calls.

User Interface Guidelines
The Palm OS device is designed for rapid entry and quick retrieval
of information. To maximize performance, the UI should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the UI of your application is consistent with
other applications on the device so users work with familiar
patterns.

This section helps you design a user interface that’s intuitive, easy to
use, and consistent with other applications on the device. You learn
about these issues:

• Understanding the Palm OS UI Design Philosophy

• Creating a Palm OS User Interface

• Palm OS Resource Selection: List or Table?

NOTE: Guidelines for implementing specific user-interface
objects, such as information on the size of buttons or the font for
labels, is provided in “Palm OS Resources” in the Palm OS SDK
Reference. Also see the chapter “User Interface” in this book.
Palm OS Programmer’s Companion 33



Good Design Pract ices
User Interface Guidelines
Understanding the Palm OS UI Design
Philosophy
This section considers some issues that underlie the design of a user
interface for the Palm OS device. It discusses these topics:

• Creating Fast Applications

• Matching Use Frequency and Accessibility

• Creating Easy-to-Use Applications

Creating Fast Applications

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for a
certain amount of time.

The Palm OS paradigm, in contrast, resembles that of a watch:
People want instant access to information. Speed is therefore a
critical design objective for hand-held organizers and is not limited
to execution speed of the code. The total time needed to navigate,
select, and execute commands can have a big impact on overall
efficiency.

The user should be able to keep up with someone on the telephone
when setting up appointments, looking up phone numbers, and so
on. Priorities include the ability to:

• Execute key commands quickly

• Navigate to key screens quickly

• Find key data quickly (for example, phone numbers)

Matching Use Frequency and Accessibility

PC user interfaces are typically designed to display commands as if
they were used equally. In reality, some commands are used very
frequently while most are used only rarely. Similarly, some settings
are more likely to be used than others. For example, a 3 p.m.- 4 p.m.

meeting occurs much more frequently than a 3:25 to 4:15 meeting.

More frequently used commands and settings should be easier to
find and faster to execute.

• Frequently executed software commands should be
accessible by one tap.
34 Palm OS Programmer’s Companion



Good Design Pract ices
User Interface Guidelines
• Infrequently used commands may require more user action.

To make your application easily accessible, follow these guidelines:

• Minimize the number of taps to execute a function or change
a setting.

• Provide command buttons for commonly executed multistep
operations. Command buttons streamline execution.

• Minimize the need to change screens.

• Minimize the number of dialogs users have to open and
close.

• Avoid dialogs within dialogs unless it’s an infrequently used
feature.

Choose the appropriate UI object when making a speed versus
screen layout decision:

• Buttons on the screen provide instant access but take up
valuable screen space.

• Push buttons are faster than popup lists and should be used
if they fit on the screen reasonably.

• Popup lists are faster than manual input or increment/
decrement buttons

• Popup lists can be cumbersome if there are too many items
on the list or if the list needs to scroll.

Creating Easy-to-Use Applications

Users must be able to pick up a Palm device and, with no training or
instruction, navigate between applications (without getting stuck)
and execute basic commands within five minutes. Advanced
commands should be easily accessible but should not be in the way.

Frequency Example Accessibility

Several times per
hour.

Checking today’s schedule
or to-do items.

One tap.

Several times per
day.

One hour meeting starting
at the top of the hour.

One tap, write in
place.

Several times per
week.

Setting a weekly meeting
(repeating event).

Several taps, second
dialog box.
Palm OS Programmer’s Companion 35



Good Design Pract ices
User Interface Guidelines
The design must therefore fit the following criteria:

• Indicate clearly where in an application the user is. The PIM
applications and modal dialog boxes have black title bars
that usually indicate the application name and view.

• Make it obvious to the user how to get to different views. The
command buttons provide the best example of achieving
this.

• Use buttons for important commands.

• Accomplishing common tasks should be fast and easy.
Minimizing steps helps not only speed but ease of use.

Ease of use amounts to a series of trade-offs. Striking the best
balance for the most people is the biggest challenge of UI design.
For example:

• Consistency reduces the time needed to learn an application
by limiting the number of things that people need to keep in
their heads at once. The user should not have to memorize an
entire set of rules to use the device easily, for example, the up
arrow key should not do different things on different screens.

• Choose the number of buttons on the screen diligently:

– The fewer buttons on the screen, the less time it takes to
learn how to use the product.

– However, keeping a few frequently used buttons on
screen helps reduce the time spent learning basic
functionality.

• Advanced features should not be in the way for beginners,
but should not require multiple-step searching.

• If possible, make your application consistent with the Palm
OS device’s native applications; users are used to interacting
with them and will easily get used to your application if you
follow these rules.

Creating a Palm OS User Interface
The small screen and pen-based user interaction require a different
UI paradigm than a desktop computer. Here are some guidelines for
making your application’s interface consistent with other
applications, including the PIM applications.
36 Palm OS Programmer’s Companion



Good Design Pract ices
User Interface Guidelines
• Provide an application icon for the Launcher. To launch an
application, users navigate to the launcher screen and tap on
an icon. Choose a short icon name and an easy to recognize
icon.

Specify the Application Icon Name and Application Icon
using the Project Settings panel in Constructor.

• Provide a base screen that offers an overview of all available
information. This screen is typically a list view. Not all
applications need a base screen.

• Allow users to view most record information by pressing the
navigation keys. Each event, to-do item, address, memo
page, and so on is called a record.

• Organize records into user-defined categories if that makes
sense. Categories usually result in more efficient screen use.
Users can switch between categories using a popup menu or
can display all records at once.

• Detailed information and advanced navigation require the
use of a stylus. See Data Entry Guidelines for different data
entry modes.

• Don’t require double taps.

• Don’t gray out menu commands or other UI elements;
instead, remove an element when it’s not available.

• If you can, allow finger navigation. For finger navigation,
buttons need to be big enough for the system to recognize
which button has been pushed. This is done by the Palm OS
system software.

• Consider overloading the buttons. If you do overload, release
the buttons at every possible opportunity. This is useful only
for certain applications, such as games.

This section provides information on a variety of UI design issues:

• Navigation Guidelines

• Preferences Guidelines

• Data Entry Guidelines

• Command Execution Guidelines

• Guidelines for Screen Layout

• Guidelines for Dialog Box Layout
Palm OS Programmer’s Companion 37



Good Design Pract ices
User Interface Guidelines
Navigation Guidelines

Users can move through applications by the following methods:

• Switching applications. Users press the physical buttons
representing the PIM applications or access a launcher to
switch applications.

On Palm OS 2.0 or later devices, users can assign each button
to the application of their choice using a Preferences panel.

When switching to an application, the user is either
presented with a standard first screen or returned to the last
place in that application.

• Switching views. Each PIM application has two or more
views (or modes) typically

– a list view (or view mode)

– an edit view (or edit mode)

The user taps on records or uses command buttons to toggle
between these views.

Edit mode gives users access to the Details button for settings
that affect the entire record. They can also access specific
menu commands for records. In many applications, tapping
on a record switches the application to edit mode and
displays an input cursor.

• Switching categories of records. A popup menu in the top
right corner lets users switch between categories. The popup
menu is found in the list view of applications that support
categories.

• Switching records in applications. Depending on the
application, the user can scroll through lists of records, then
tap on a record or a Details button for further information.

• Graffiti navigation. Support Graffiti navigation:

– Left-right-forward-backward movement as part of a
field’s behavior.

– Getting to next and previous screen using the down/up
and up/down keystrokes.

• Cycling through categories. Holding the button on the hard
case cycles through all categories.
38 Palm OS Programmer’s Companion



Good Design Pract ices
User Interface Guidelines
• Scrolling. Records too long to display in one screen are
scrollable. On-screen scroll buttons allow users to move up
or down one line at a time. The physical arrow buttons allow
users to move up and down one page at a time.

Scrollbars were introduced in OS 2.0. Scrollbars are optional.
Developers have to consider the trade-off between taking up
7 pixels of horizontal space (the width of the scroll bar) vs.
providing convenient scrolling for long lists of records.

Preferences Guidelines

Palm OS 2.0 and later has improved preferences facilities. They are
available through launch codes, discussed in the chapter
“Application Launch Codes” in the Palm OS SDK Reference.

The system now offers application-specific panels, sticky panels,
and quick switch, as follows:

• Application-specific panels. Applications can add
application-specific preferences panels to follow the system
panels when the user cycles though the preferences. To do so,
use the common code provided in the Formats  example
application to make the pull-down menu available. If the
application uses the common code, a Done button inserts
itself if the panel was called from the application, not
sequentially following another panel.

• Sticky panels. When users bring up a preference panel from
the launcher, exit the panel, then bring it up again, the
system returns to the last panel used.

• Quick switch. Applications can now use the launch codes
sysAppLaunchCmdPanelCalledFromApp  and
sysAppLaunchCmdReturnFromPanel , which allow an
application to let users change preferences without first
selecting the launcher, then selecting the application again.

Data Entry Guidelines

Users can enter data by the following methods:

• Graffiti. Graffiti characters are written in the text area on the
digitizer and appear on the screen at the cursor location. The
Palm OS Programmer’s Companion 39



Good Design Pract ices
User Interface Guidelines
user specifies the cursor location by tapping directly on the
screen with the stylus.

Some controls accept input from Graffiti: For example, in the
time selector dialog, you can write the time into the Graffiti
area and it appears as start time or end time. The “next field”
stroke switches between start and end time. The “Return”
stroke dismisses the dialog.

For 2.0 and later applications, users expect that your
application includes the Graffiti Reference option. You can
include this option by calling
SysGraffitiReferenceDialog .

• On-screen keyboard. In place of using Graffiti, the user can
tap an on-screen keyboard with the stylus. Any text is
entered into a temporary window. When the user dismisses
the keyboard, the system inserts that text at the cursor
location.

• Controls. Buttons, check boxes, and popup lists provide a
quick way to enter settings and select options.

• HotSync. The user can type data on the PC and download it
to the Palm OS device.

• Auto-creation. Many applications, such as the DateBook or
the Memo Pad provide an auto-create feature. If the user
starts to write in a list view with no record selected, a new
record is created with no additional interaction.

To provide a consistent interface, follow these guidelines when
designing the data entry interface for your application:

• Let users perform basic data entry in place.

• Have the cursor ready and visible if there’s only one field for
text entry (saves one tap).

• Provide a Details dialog for more elaborate data entry.

• Use the following format in the Details dialog:

Item (right-justified): Value(left-justified)

for example:

Set Date: 4-1-96

Auto-off after: 2 minutes
40 Palm OS Programmer’s Companion



Good Design Pract ices
User Interface Guidelines
• Don’t nest dialog boxes too deeply.

• Provide only one interface per function, that is, allow users to
interact with an application through either a button, menu,
or popup list. Don’t provide both a button and a menu for the
same actions.

NOTE: All developers are urged to include the rules listed below
in their test plan. Applications that don’t follow these rules may
cause problems for other applications on the device.

• Whenever a field for user input is available, make sure that:

– System keyboard is available via shortcut

– System keyboard is available via menu

– Graffiti input is possible (regular strokes and shortcuts)

– Cut, copy, paste, and undo are possible

• Be sure to handle the clipboard correctly. If you use it, allow
users to copy and paste between applications; if you don’t,
make sure it’s intact when you exit.

Command Execution Guidelines

Users can execute commands by the following methods:

• Command buttons. Users execute common commands by
tapping on command buttons at the bottom of the screen.

• Menus. Commands not represented by command buttons
can be accessed via a simple menu system. The user taps on a
menu hard icon in the digitizer area to invoke a menu bar.
Beginning in Palm OS 3.5, the user may also invoke a menu
bar by tapping the form’s title. Provide menu shortcuts if
possible.

NOTE: If you provide shortcuts, make sure that each shortcut is
unique among all commands available at that time.

• Graffiti menu command shortcuts. Users can write a special
Graffiti stroke and a command keystroke to execute a menu
command. This is analogous to keyboard shortcuts on a
personal computer. For example, writing the command
Palm OS Programmer’s Companion 41



Good Design Pract ices
User Interface Guidelines
stroke symbol (a bottom-left to top-right line) and “C” allows
the user to copy the selected text.

• Buttons on command toolbar. Beginning in Palm OS 3.5,
entering the Graffiti command stroke symbol displays a
command toolbar containing buttons for the commands that
are possible in the current user context. For example, if text is
selected in a field, the toolbar may display buttons for cut,
copy, paste, and undo. Users may either complete the menu
command shortcut as described above, or they may tap one
of the buttons on the command toolbar.

Guidelines for Screen Layout

The illustration below provides some interface guidelines. Each
guideline is numbered and explained in more detail below.

1. In the title bar for each screen, provide both the application
name and the name of the screen, if possible. Otherwise,
provide the most relevant information.

2. Always go to the edge of the screen; that is, don’t use
borders. This practice maximizes screen real estate available
to the application. The non-active area of the LCD and the
case provide a natural margin.

2. Go to the edge of the screen.

1. Provide a title bar.

4. Align buttons at the bottom of the screen.

5. Leave one pixel above and below font height

3. Use resources provided with environment.

• repeating buttons
• push buttons
• fields
• buttons

This example uses
42 Palm OS Programmer’s Companion



Good Design Pract ices
User Interface Guidelines
3. Use the resources provided with the development
environment and use the recommended values for width,
height, and so on, provided in “Palm OS Resources” in the
Palm OS SDK Reference.

4. Align buttons with the bottom edge of the screen.

5. For text surrounded by borders, leave one pixel above and
below the font height.

6. For controls that can be displayed in groups, have at least
two pixels to the left and right of the text label. The exception
is command buttons, which require wider margins to
accommodate the rounded border.

7. Don’t change or obscure the Graffiti status indicator area.

8. Don’t change or obscure the silk-screened icons.

Guidelines for Dialog Box Layout

The illustration below provides some guidelines for dialog box
interfaces. Each guideline is numbered and explained in more detail
below under the same number.
Palm OS Programmer’s Companion 43



Good Design Pract ices
User Interface Guidelines
1. Provide online help for dialogs. If you associate a Help ID
with a form in Constructor, the system will add the “i” icon
and handle presentation of the dialog.

2. Use bold face for labels, nonbold for editable items.

3. In the details dialog, right-align the label and left align the
editable field.

4. When using buttons in dialogs, leave a space of 3 pixels
between the edge of the dialog and the buttons.

5. Align dialogs with the bottom of the screen. Leave the screen
title bar visible if possible.

4. Leave 3 pixels between edge

5. Align dialog with bottom of screen.

2. Use bold for labels.
Use non-bold for editable items.

3. Use right align:Left align in Details dialog.

1. Provide online help for dialogs.

of dialog and buttons.
44 Palm OS Programmer’s Companion



Good Design Pract ices
Localization Guidelines
Palm OS Resource Selection: List or Table?
Many developers find it difficult to decide whether to choose a list
or a table for certain components of their application.

Use tables when you need quality text handling (including editing
in place). Be careful if you work with non-text items in some of the
columns, the selection region may be smaller than you need.

Use lists when users select from a predefined list (e.g. categories) or
if the application determines the information to be displayed on the
fly (based on previous user selections). Remember that you are
responsible for scroll button handling and that editing can be
non-trivial.

Localization Guidelines
If you’re planning to localize the Palm OS software that you’re
developing, start by looking at the localized versions of the four
PIM applications on the device. Then plan your application’s
interface, keeping in mind localization issues listed below. Also see
the chapter “Localized Applications”, which describes guidelines
for writing code in a localized application.

• If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

– extra space for strings

– larger dialogs than the English version requires

• Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm OS device.

• Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language.

• Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a
particular substring, or any other attribute that might
disappear in translation.

• Consider using string templates. For example, the MemoPad
application uses the template: Memo # of %. The application
Palm OS Programmer’s Companion 45



Good Design Pract ices
Making Your Application Run on Different Devices
can replace # and % to change the text. Use as many
parameters as possible to give localizers greater flexibility.
Avoid building sentences by concatenating substrings
together, as this often causes translation problems.

• Remember that user interface elements such as lists, fields,
and tips scroll if you need more space.

Making Your Application Run on Different
Devices

There are many different devices that run Palm OS, and each may
have a different version of the OS installed on it (see Table 2.1).
Users are not expected to upgrade the Palm OS as frequently as they
would an OS on a desktop computer. This fact makes backward
compatibility more crucial for Palm applications.

Table 2.1 Some Palm OS platform devices

Name Palm OS Version

Pilot 1000a

a. No longer available.

1.0

Pilot 5000a 1.0

PalmPilota 2.0

PalmPilot Professionala 2.0

Palm III™ 3.0

IBM Workpad 2.0 or 3.0

Symbol SPT 1500 3.0

Qualcomm pdQ 3.0

Palm IIIe™ 3.1

Palm IIIx™ 3.1

Palm V™ 3.1

Palm VII™ 3.2

Palm IIIc™ 3.5
46 Palm OS Programmer’s Companion



Good Design Pract ices
Making Your Application Run on Different Devices
This section describes how to make sure your application runs on as
many devices as possible by discussing:

• Running New Applications on an Older Device

• Compiling Older Applications With The Latest SDK

Running New Applications on an Older Device
Releases of the Palm OS are binary compatible with each other. If
you write a brand new application today, it can run on all versions
of the operating system provided the application doesn’t use any
new features. In other words, if you write your application using
only features available in Palm OS 1.0, then your application runs
on all devices. If you use 2.0 features, your application won’t run on
the earliest Palm OS platform devices, but it will run on all others,
and so on.

How can you tell which features are available in each version of the
operating system? There are a couple of way to do so:

• The Palm OS SDK Reference has a “Compatibility Guide”
appendix. This guide lists the feature and functions
introduced in each operating system version greater than 1.0.

• The header file SysTraps.h  (or CoreTraps.h  on Palm OS
3.5 and higher) lists all of the system traps available. Traps
are listed in the order in which they were introduced to the
system, and comments in the file clearly mark where each
operating system version begins.

Programmatically, you can use the feature manager to determine
which features are available on the system the application is
running on. Note that you can’t always rely on the operating system
version number to guarantee that a feature exists. For example,
Palm OS version 3.2 introduces wireless support, but not all Palm
OS devices have that capability. Thus, checking that the system
version is 3.2 does not guarantee that wireless support exists.
Consult the “Compatibility Guide” in the Palm OS SDK Reference to
learn how to check for the existence of each specific feature.
Palm OS Programmer’s Companion 47



Good Design Pract ices
Making Your Application Run on Different Devices
Compiling Older Applications With The Latest
SDK
As a rule, all Palm OS applications developed with an earlier
version of the Palm OS platform SDK should run error-free on the
latest release.

If you want to compile your older application under the latest
release, you need to look out for functions with a changed API. For
any of these functions, the old function still exists with an extension
noting the release that supports it, such as V10 or V20.

You can choose one of two options:

• Change the function name to keep using the old API. Your
application will then run error free on the newer devices.

• Update your application to use the new API. The application
will then run error free and have access to some new
functionality; however, it will no longer run on older devices
that use prior releases of the OS.

NOTE: If you want to compile an existing application with the
Palm OS 3.5 SDK, note that some header file names have
changed, and the names used for basic types have changed. For
example, parameters previously declared as Word are now
UInt16 or Int16 . To compile existing applications, you’ll need to
make these changes in your code or include the header file
PalmOSCompatibility.h . See the “Compatibility Guide” in the
Palm OS SDK Reference for further details.
48 Palm OS Programmer’s Companion



3
Application Startup
and Stop
On desktop computers, an application starts up when a user
launches it and stops when the user chooses the Exit or Quit
command. These things occur a little bit differently on the Palm OS®

handheld. A Palm OS application does launch when the user
requests it, but it may also launch in response to some other user
action, such as a request for the global find facility. Palm OS
applications don’t have an Exit command; instead they exit when a
user requests another application.

This chapter describes how an application launches, how an
application stops, and the code you must write to perform these
tasks properly. It covers:

• Launch Codes and Launching an Application

• Responding to Launch Codes

• Launching Applications Programmatically

• Creating Your Own Launch Codes

• Stopping an Application

• Launch Code Summary

This chapter does not cover the main application event loop. The
event loop is covered in Chapter 4, “Event Loop.”

Launch Codes and Launching an Application
An application launches when it receives a launch code. Launch
codes are a means of communication between the Palm OS and the
application (or between two applications).

For example, an application typically launches when a user presses
one of the buttons on the device or selects an application icon from
Palm OS Programmer’s Companion 49



Appl icat ion Startup and Stop
Responding to Launch Codes
the application launcher screen. When this happens, the system
generates the launch code sysAppLaunchCmdNormalLaunch ,
which tells the application to perform a full launch and display its
user interface.

Other launch codes specify that the application should perform
some action but not necessarily become the current application (the
application the user sees). A good example of this is the launch code
used by the global find facility. The global find facility allows users
to search all databases for a certain record, such as a name. In this
case, it would be very wasteful to do a full launch—including the
user interface—of each application only to access the application’s
databases in search of that item. Using a launch code avoids this
overhead.

Each launch code may be accompanied by two types of information:

• A parameter block, a pointer to a structure that contains
several parameters. These parameters contain information
necessary to handle the associated launch code.

• Launch flags indicate how the application should behave.
For example, a flag could be used to specify whether the
application should display UI or not. (See “Launch Flags” in
the Palm OS SDK Reference.)

A complete list of all launch codes is provided at the end of this
chapter in the section “Launch Code Summary.” That section
contains links into where each launch code is described in the Palm
OS SDK Reference.

Responding to Launch Codes
Your application should respond to launch codes in a function
named PilotMain . PilotMain  is the entry point for all
applications.

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only
applications that have text data should respond to a launch code
requesting a string search. If an application can’t handle a launch
code, it exits without failure. Otherwise, it performs the action
immediately and returns.
50 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Responding to Launch Codes
Listing 3.1 shows parts of PilotMain  from the Datebook
application as an example. To see the complete example, go to the
examples folder in the Palm OS SDK and look at the file
Datebook.c .

Listing 3.1 PilotMain in Datebook.c

UInt32 PilotMain (UInt16 cmd, void *cmdPBP,
UInt16 launchFlags)
{

return DBPilotMain(cmd, cmdPBP, launchFlags);
}

static UInt32 DBPilotMain (UInt16 cmd,
void *cmdPBP, UInt16 launchFlags)

{
UInt16 error;
Boolean launched;

// This app makes use of PalmOS 2.0 features.It
// will crash if run on an earlier version of
// PalmOS. Detect and warn if this happens, then
// exit.
error = RomVersionCompatible (version20,

launchFlags);
if (error)

return error;

// Launch code sent by the launcher or the
// datebook button.
if (cmd == sysAppLaunchCmdNormalLaunch) {

error = StartApplication ();
if (error) return (error);

FrmGotoForm (DayView);
EventLoop ();
StopApplication ();

}

Palm OS Programmer’s Companion 51



Appl icat ion Startup and Stop
Responding to Launch Codes
// Launch code sent by text search.
else if (cmd == sysAppLaunchCmdFind) {

Search ((FindParamsPtr)cmdPBP);
}

// This launch code might be sent to the app
// when it's already running if the user hits
// the "Go To" button in the Find Results dialog
// box.
else if (cmd == sysAppLaunchCmdGoTo) {

launched = launchFlags &
sysAppLaunchFlagNewGlobals;

if (launched) {
error = StartApplication ();
if (error) return (error);

GoToItem ((GoToParamsPtr) cmdPBP, launched);

EventLoop ();
StopApplication ();

} else
GoToItem ((GoToParamsPtr) cmdPBP, launched);

}

// Launch code sent by sync application to
// notify the datebook application that its
// database was been synced.
// ...
// Launch code sent by Alarm Manager to notify
// the datebook application that an alarm has
// triggered.
// ...
// Launch code sent by Alarm Manager to notify
// the datebook application that is should
// display its alarm dialog.
// ...
// Launch code sent when the system time is
// changed.
// ...
52 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Responding to Launch Codes
// Launch code sent after the system is reset.
// We use this time to create our default
// database if this is a hard reset
// ...
// Launch code sent by the DesktopLink server
// when it creates a new database.  We will
// initialize the new database.
return (0);

}

Responding to Normal Launch
When an application receives the launch code
sysAppLaunchCmdNormalLaunch , it begins with a startup
routine, then goes into an event loop, and finally exits with a stop
routine. (The event loop is described in Chapter 4, “Event Loop.”
The stop routine is shown in the section “Stopping an Application”
at the end of this chapter.)

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global
variables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related
global variables.

4. Initialize any other global variables.

As you saw in Listing 3.1, the Datebook application example
responds to sysAppLaunchCmdNormalLaunch  by calling a
function named StartApplication . Listing 3.2 shows the
StartApplication  function.

Listing 3.2 StartApplication from Datebook.c

static UInt16 StartApplication (void)
{

UInt16 error = 0;
Palm OS Programmer’s Companion 53



Appl icat ion Startup and Stop
Responding to Launch Codes
Err err = 0;
UInt16 mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;
UInt16 prefsSize;

// Step 1: Get system-wide preferences.
PrefGetPreferences (&sysPrefs);
// Determime if secret records should be
// displayed.
HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)
mode = dmModeReadWrite;

else
mode = dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system
// preferences.
TimeFormat = sysPrefs.timeFormat;

// Get the date formats from the system
// preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get the starting day of the week from the
// system preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.
TimSecondsToDateTime (TimGetSeconds(),

&dateTime);
Date.year = dateTime.year - firstYear;
Date.month = dateTime.month;
Date.day = dateTime.day;
54 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Responding to Launch Codes
// Step 2. Find the application's data file. If
// it doesn't exist, create it.
ApptDB =

DmOpenDatabaseByTypeCreator(datebookDBType,
sysFileCDatebook, mode);

if (! ApptDB) {
error = DmCreateDatabase (0, datebookDBName,

sysFileCDatebook, datebookDBType, false);
if (error) return error;

ApptDB =
DmOpenDatabaseByTypeCreator(datebookDBType,
sysFileCDatebook, mode);

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB);
if (error) return error;

}

// Step 3. Get application-specific preferences.
// Read the preferences/saved-state information.
// There is only one version of the DateBook
// preferences so don't worry
// about multiple versions.
prefsSize = sizeof (DatebookPreferenceType);
if (PrefGetAppPreferences (sysFileCDatebook,

datebookPrefID, &prefs, &prefsSize, true)
!= noPreferenceFound) {

DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
ShowTimeBars = prefs.showTimeBars;
CompressDayView = prefs.compressDayView;
ShowTimedAppts = prefs.showTimedAppts;
ShowUntimedAppts = prefs.showUntimedAppts;
ShowDailyRepeatingAppts =

prefs.showDailyRepeatingAppts;
Palm OS Programmer’s Companion 55



Appl icat ion Startup and Stop
Responding to Launch Codes
}

// Step 4. Initialize any other global
// variables.
TopVisibleAppt = 0;
CurrentRecord = noRecordSelected;

// Load the far call jump table.
FarCalls.apptGetAppointments =

ApptGetAppointments;
FarCalls.apptGetRecord = ApptGetRecord;
FarCalls.apptFindFirst = ApptFindFirst;
FarCalls.apptNextRepeat = ApptNextRepeat;
FarCalls.apptNewRecord = ApptNewRecord;
FarCalls.moveEvent = MoveEvent;

return (error);
}

Responding to Other Launch Codes
If an application receives a launch code other than
sysAppLaunchCmdNormalLaunch , it decides if it should respond
to that launch code. If it responds to the launch code, it does so by
implementing a launch code handler, which is invoked from its
PilotMain  function.

In most cases, when you respond to other launch codes, you are not
able to access global variables. Global variables are generally only
allocated after an application receives
sysAppLaunchCmdNormalLaunch  (see Listing 3.2) or
sysAppLaunchCmdGoto ; so if the application hasn’t received
either of these launch codes, its global variables are usually not
allocated and not accessible. In addition, if the application has
multiple code segments, you cannot access code outside of segment
0 (the first segment) if the application has no access to global
variables.

There is one other case where an application may have access to its
global variables (and to code segments other than 0). This is when
56 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Responding to Launch Codes
an application is launched with the code
sysAppLaunchCmdURLParams . If this launch code results from a
palm  URL, then globals are available. If the launch code results
from a palmcall  URL, then globals are not available. The URL is
passed to your application in the launch parameter block.

NOTE: Static local variables are stored with the global variables
on the system’s dynamic heap. They are not accessible if global
variables are not accessible.

Checking launch codes is generally a good way to determine if your
application has access to global variables. However, it actually
depends on the setting of the launch flags that are sent with the
launch code. In particular, if the sysAppLaunchFlagNewGlobals
flag is set, then your application’s global variables have been
allocated on this launch. This flag is set by the system and isn’t (and
shouldn’t be) set by the sender of a launch code.

Boolean appHasGlobals = launchFlags & sysAppLaunchFlagNewGlobals;

There’s one case where this flag won’t be set and your application
will still have access to global variables. This is when your
application is already running as the current application. In this
case, its global variables have already been allocated through a
previous launch.

If your application receives a launch code other than
sysAppLaunchCmdNormalLaunch  or sysAppLaunchCmdGoTo ,
you can find out if it is the current application by checking the
launch flags that are sent with the launch code. If the application is
the currently running application, the
sysAppLaunchFlagSubCall  flag is set. This flag is set by the
system and isn’t (and shouldn’t be) set by the sender of a launch
code.

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;
Palm OS Programmer’s Companion 57



Appl icat ion Startup and Stop
Launching Applications Programmatically
Launching Applications Programmatically
Applications can send launch codes to each other, so your
application might be launched from another application or it might
be launched from the system. An application can use a launch code
to request that another application perform an action or modify its
data. For example, a data collection application could instruct an
email application to queue up a particular message to be sent.

Sending a launch code to another application is like calling a
specific subroutine in that application: the application responding to
the launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

To send a launch code to another application, use the system
manager function SysAppLaunch . Use this routine when you want
to make use of another application’s functionality and eventually
return control of the system to your application. Usually,
applications use it only for sending launch codes to other user-
interface applications.

For example, you would use this function to request that the built in
Address Book application search its databases for a specified phone
number and return the results of the search to your application.
When calling SysAppLaunch  do not set launch flags yourself—the
SysAppLaunch  function sets launch flags appropriately for you.

An alternative, simpler method of sending launch codes is the
SysBroadcastActionCode  call. This routine automatically finds
all other user-interface applications and calls SysAppLaunch  to
send the launch code to each of them.

When an application is called using SysAppLaunch , the system
considers that application to be the current application even though
the application has not switched from the user’s perspective. Thus,
if your application is called from another application, it can still use
the function SysCurAppDatabase  to get the card number and
database ID of its own database.

If you want to actually close your application and open another
application, use SysUIAppSwitch instead of SysAppLaunch . This
routine notifies the system which application to launch next and
feeds an application-quit event into the event queue. If and when
58 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Creating Your Own Launch Codes
the current application responds to the quit event and returns, the
system launches the new application.

When you allocate a parameter block to pass to SysUIAppSwitch
or SysAppLaunch , you must call MemPtrSetOwner  to grant
ownership of the parameter block chunk to the OS (your application
is originally set as the owner). If the parameter block structure
contains references by pointer or handle to any other chunks, you
also must set the owner of those chunks by calling
MemPtrSetOwner  or MemHandleSetOwner . If you don’t change
the ownership of the parameter block, it will get freed before the
application you’re launching has a chance to use it.

In Palm OS 3.0 and higher, you can also use the Application
Launcher to launch any application. For more information, see the
section “Application Launcher” in the “User Interface” chapter.

WARNING! Do not use the SysUIAppSwitch  or
SysAppLaunch  functions to open the Application Launcher
application.

Creating Your Own Launch Codes
The Palm OS contains predefined launch codes, which are listed in
Table 3.1 at the end of this chapter. In addition, developers can
create their own launch codes to implement specific functionality.
Both the sending and the receiving application must know about
and handle any developer-defined launch codes.

The launch code parameter is a 16-bit word value. All launch codes
with values 0–32767 are reserved for use by the system and for
future enhancements. Launch codes 32768–65535 are available for
private use by applications.

Stopping an Application
An application shuts itself down when it receives the event
appStopEvent . Note that this is an event, not a launch code. The
Palm OS Programmer’s Companion 59



Appl icat ion Startup and Stop
Stopping an Application
application must detect this event and terminate. (You’ll learn more
about events in the next chapter.)

When an application stops, it is given an opportunity to perform
cleanup activities including closing databases and saving state
information.

In the stop routine, an application should first flush all active
records, then close the application’s database, and finally save those
aspects of the current state needed for startup. Listing 3.3 is an
example of a StopApplication  routine from Datebook.c .

Listing 3.3 StopApplication from Datebook.c

static void StopApplication (void)
{

DatebookPreferenceType prefs;

// Write the preferences / saved-state
// information.
prefs.noteFont = NoteFont;
prefs.dayStartHour = DayStartHour;
prefs.dayEndHour = DayEndHour;
prefs.alarmPreset = AlarmPreset;
prefs.saveBackup = SaveBackup;
prefs.showTimeBars = ShowTimeBars;
prefs.compressDayView = CompressDayView;
prefs.showTimedAppts = ShowTimedAppts;
prefs.showUntimedAppts = ShowUntimedAppts;
prefs.showDailyRepeatingAppts =

ShowDailyRepeatingAppts;

// Write the state information.
PrefSetAppPreferences (sysFileCDatebook,

datebookPrefID, datebookVersionNum, &prefs,
sizeof (DatebookPreferenceType), true);

// Send a frmSave event to all the open forms.
FrmSaveAllForms ();

// Close all the open forms.
60 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Launch Code Summary
FrmCloseAllForms ();

// Close the application's data file.
DmCloseDatabase (ApptDB);

}

Launch Code Summary
Table 3.1 lists all Palm OS standard launch codes. These launch
codes are declared in the header SystemMgr.h . All the parameters
for a launch code are passed in a single parameter block, and the
results are returned in the same parameter block.

Table 3.1 Palm OS Launch Codes

Code Request

scptLaunchCmdExecuteCmd Execute the specified Network login
script plugin command.

scptLaunchCmdListCmds Provide information about the
commands that your Network script
plugin executes.

sysAppLaunchCmdAddRecord Add a record to a database.

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick
actions such as sounding alarm tones.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDisplayAlarm Display specified alarm dialog or
perform time-consuming alarm-
related actions.

sysAppLaunchCmdExgAskUser Let application override display of
dialog asking user if they want to
receive incoming data via the
exchange manager.

sysAppLaunchCmdExgReceiveData Notify application that it should
receive incoming data via the
exchange manager.
Palm OS Programmer’s Companion 61



Appl icat ion Startup and Stop
Launch Code Summary
sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoto Go to a particular record, display it,
and optionally select the specified text.

sysAppLaunchCmdGoToURL Launch Clipper application and open
a URL.

sysAppLaunchCmdInitDatabase Initialize database.

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind , a level of
indirection is implied. For example,
look up a phone number associated
with a name.

sysAppLaunchCmdNormalLaunch Launch normally.

sysAppLaunchCmdNotify Broadcast a notification.

sysAppLaunchCmdOpenDB Launch application and open a
database.

sysAppLaunchCmdPanelCalledFromApp Tell preferences panel that it was
invoked from an application, not the
Preferences application.

sysAppLaunchCmdReturnFromPanel Tell an application that it’s restarting
after preferences panel had been
called.

sysAppLaunchCmdSaveData Save data. Often sent before find
operations.

sysAppLaunchCmdSyncNotify Notify applications that a HotSync®

has been completed.

sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked
down.

Table 3.1 Palm OS Launch Codes (continued)

Code Request
62 Palm OS Programmer’s Companion



Appl icat ion Startup and Stop
Launch Code Summary
sysAppLaunchCmdSystemReset Respond to system reset. No UI is
allowed during this launch code.

sysAppLaunchCmdTimeChange Respond to system time change.

sysAppLaunchCmdURLParams Launch an application with
parameters from Clipper.

Table 3.1 Palm OS Launch Codes (continued)

Code Request
Palm OS Programmer’s Companion 63





4
Event Loop
This chapter discusses the event manager, the main interface
between the Palm OS® system software and the application. It
discusses in some detail what an application does in response to
user input, providing code fragments as examples where needed.
The topics covered are:

• The Application Event Loop

• Low-Level Event Management

This chapter’s focus is on how to write your applications main
event loop. For more detailed information on events, consult the
Palm OS SDK Reference. Details for each event are given in Chapter
3, “Palm OS Events.” In addition to the reference material, consult
the chapter “User Interface” in this book. It provides the event flow
for each user interface element.

Figure 4.1 illustrates control flow in a typical application.
Palm OS Programmer’s Companion 65



Event Loop
Figure 4.1 Control Flow in a Typical Application

EvtGetEvent

SysHandleEvent

MenuHandleEvent

FrmDispatchEvent

Is there an event?

yes

no

Is this a system function?
Process event,
generate other events
as necessary, return. (e.g., power-off, Graffiti input)

Handle menu interface,

Remain in loop until
there is an event.

then go on.

ApplicationHandleEvent

yes

no

Is this a menu?

Load from resources, set event
handler for form loaded.

FrmHandleEvent

yes

no

Is this a frmLoadEvent?

Did application handler
complete event processing?

Provide default processing
for event.

yes

no

no

yes

Dispatch event to application’s
handler for form.
66 Palm OS Programmer’s Companion



Event Loop
The Application Event Loop
The Application Event Loop
As described in the previous chapter, “Application Startup and
Stop,” an application performs a full startup when it receives the
launch code sysAppLaunchCmdNormalLaunch . It begins with a
startup routine, then goes into an event loop, and finally exits with a
stop routine.

In the event loop, the application fetches events from the queue and
dispatches them, taking advantage of the default system
functionality as appropriate.

While in the loop, the application continuously checks for events on
the event queue. If there are events on the queue, the application has
to process them as determined in the event loop. As a rule, the
events are passed on to the system, which knows how to handle
them. For example, the system knows how to respond to pen taps
on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appStopEvent  (not a
launch code) through the event queue. The application must detect
this event and terminate.

Listing 4.1 Top-Level Event Loop Example from Datebook.c

static void EventLoop (void)
{

UInt16 error;
EventType event;
do

{
EvtGetEvent (&event, evtWaitForever);

PreprocessEvent (&event);

if (! SysHandleEvent (&event))

if (! MenuHandleEvent (NULL, &event,
&error))

if (! ApplicationHandleEvent (&event))
Palm OS Programmer’s Companion 67



Event Loop
The Application Event Loop
FrmDispatchEvent (&event);

#if EMULATION_LEVEL != EMULATION_NONE
ECApptDBValidate (ApptDB);

#endif
}

while (event.eType != appStopEvent);
}

In the event loop, the application iterates through these steps (see
Figure 4.1 and Listing 4.1)

1. Fetch an event from the event queue.

2. Call PreprocessEvent to allow the datebook event
handler to see the command keys before any other event
handler gets them. Some of the datebook views display UI
that disappears automatically; this UI needs to be dismissed
before the system event handler or the menu event handler
display any UI objects.

Note that not all applications need a PreprocessEvent
function. It may be appropriate to call SysHandleEvent
right away.

3. Call SysHandleEvent to give the system an opportunity to
handle the event.

The system handles events like power on/power off,
Graffiti® input, tapping silk-screened icons, or pressing
buttons. During the call to SysHandleEvent , the user may
also be informed about low-battery warnings or may find
and search another application.

Note that in the process of handling an event,
SysHandleEvent  may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandleEvent returns true if the event was completely
handled, that is, no further processing of the event is
68 Palm OS Programmer’s Companion



Event Loop
The Application Event Loop
required. The application can then pick up the next event
from the queue.

4. If SysHandleEvent  did not completely handle the event,
the application calls MenuHandleEvent .
MenuHandleEvent  handles two types of events:

– If the user has tapped in the area that invokes a menu,
MenuHandleEvent  brings up the menu.

– If the user has tapped inside a menu to invoke a menu
command, MenuHandleEvent  removes the menu from
the screen and puts the events that result from the
command onto the event queue.

MenuHandleEvent  returns TRUE if the event was
completely handled.

5. If MenuHandleEvent  did not completely handle the event,
the application calls ApplicationHandleEvent , a
function your application has to provide itself.
ApplicationHandleEvent  handles only the
frmLoadEvent  for that event; it loads and activates
application form resources and sets the event handler for the
active form.

6. If ApplicationHandleEvent  did not completely handle
the event, the application calls FrmDispatchEvent .
FrmDispatchEvent  first sends the event to the
application’s event handler for the active form. This is the
event handler routine that was established in
ApplicationHandleEvent . Thus the application’s code is
given the first opportunity to process events that pertain to
the current form. The application’s event handler may
completely handle the event and return true  to calls from
FrmDispatchEvent. In that case, FrmDispatchEvent
returns to the application’s event loop. Otherwise,
FrmDispatchEvent calls FrmHandleEvent to provide the
system’s default processing for the event.

For example, in the process of handling an event, an
application frequently has to first close the current form and
then open another one, as follows:

– The application calls FrmGotoForm  to bring up another
form. FrmGotoForm  queues a frmCloseEvent  for the
Palm OS Programmer’s Companion 69



Event Loop
The Application Event Loop
currently active form, then queues frmLoadEvent  and
frmOpenEvent  for the new form.

– When the application gets the frmCloseEvent, it closes
and erases the currently active form.

– When the application gets the frmLoadEvent , it loads
and then activates the new form. Normally, the form
remains active until it’s closed. (Note that this wouldn’t
work if you preload all forms, but preloading is really
discouraged. Applications don’t need to be concerned
with the overhead of loading forms; loading is so fast that
applications can do it when they need it.) The
application’s event handler for the new form is also
established.

– When the application gets the frmOpenEvent , it
performs any required initialization of the form, then
draws the form on the display.

After FrmGotoForm  has been called, any further events that
come through the main event loop and to
FrmDispatchEvent are dispatched to the event handler for
the form that’s currently active. For each dialog box or form,
the event handler knows how it should respond to events, for
example, it may open, close, highlight, or perform other
actions in response to the event. FrmHandleEvent  invokes
this default UI functionality.

After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function. For example, in the
datebook application, it may call DayViewHandleEvent  or
WeekViewHandleEvent .

Notice how the event flow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for
ctlSelectEvent . All the details of the event queue are handled
by the system.

Some events are actually requests for the application to do
something, for example, frmOpenEvent . Typically, all the
application does is draw its own interface, using the functions
70 Palm OS Programmer’s Companion



Event Loop
Low-Level Event Management
provided by the system, and then waits for events it can handle to
arrive from the queue.

Only the active form should process events.

Low-Level Event Management
You can perform low-level event management using System Event
Manager functions. The system event manager:

• manages the low-level pen and key event queues.

• translates taps on silk-screened icons into key events.

• sends pen strokes in the Graffiti area to the Graffiti
recognizer.

• puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the system event manager
directly because most of the functionality they need comes from the
higher-level event manager or is automatically handled by the
system.

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

This section provides information about the system event manager
by discussing these topics:

• Event Translation: Pen Strokes to Key Events

• Pen Queue Management

• Auto-Off Control

• System Event Manager Summary

Event Translation: Pen Strokes to Key Events
One of the higher-level functions provided by the system event
manager is conversion of pen strokes on the digitizer to key events.
For example, the system event manager sends any stroke in the
Graffiti area of the digitizer automatically to the Graffiti recognizer
for conversion to a key event. Taps on silk-screened icons, such as
Palm OS Programmer’s Companion 71



Event Loop
Low-Level Event Management
the application launcher, Menu button, and Find button, are also
intercepted by the system event manager and converted into the
appropriate key events.

When the system converts a pen stroke to a key event, it:

• Retrieves all pen points that comprise the stroke from the pen
queue

• Converts the stroke into the matching key event

• Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling EvtGetEvent .

Most applications rely on the following default behavior of the
system event manager:

• All strokes in the predefined Graffiti area of the digitizer are
converted to key events

• All taps on the silk-screened icons are convert to key events

• All other strokes are passed on to the application for
processing

Pen Queue Management
The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
queue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

Table 4.1 summarizes pen management.

Table 4.1 Pen Queue Management

The user... The system...

Brings the pen down
on the digitizer.

Stores a pen-down sequence in the pen
queue and starts the stroke capture.
72 Palm OS Programmer’s Companion



Event Loop
Low-Level Event Management
The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeuing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must first make a call to dequeue the stroke
information (EvtDequeuePenStrokeInfo ) before the points for
the stroke can be dequeued. Once the last point is dequeued,
another EvtDequeuePenStrokeInfo call must be made to get the
next stroke.

Applications usually don’t need to call
EvtDequeuePenStrokeInfo  because the event manager calls
this function automatically when it detects a complete pen stroke in
the pen queue. After calling EvtDequeuePenStrokeInfo , the
system event manager stores the stroke bounds into the event
record and returns the pen-up event to the application. The
application is then free to dequeue the stroke points from the pen
queue, or to ignore them altogether. If the points for that stroke are
not dequeued by the time EvtGetEvent is called again, the system
event manager automatically flushes them.

Key Queue Management
The key queue is an area of system memory preallocated for
capturing key events. Key events come from one of two
occurrences:

• As a direct result of the user pressing one of the buttons on
the case

• As a side effect of the user drawing a Graffiti stroke on the
digitizer, which is converted in software to a key event

Table 4.2 summarizes key management.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen
queue and turns off stroke capture.

Table 4.1 Pen Queue Management (continued)

The user... The system...
Palm OS Programmer’s Companion 73



Event Loop
Low-Level Event Management
The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the event manager does this automatically if it detects a key in the
queue and returns a keyDownEvent  to the application through the
EvtGetEvent  call.

Auto-Off Control
Because the system event manager manages hardware events like
pen taps and hardware button presses, it’s responsible for resetting
the auto-off timer on the device. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call EvtResetAutoOffTimer .

Table 4.2 Key Queue Management

User action System response

Hardware button
press.

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Hold down key for
extended time period.

Timer task to supports auto-repeat of the key (timer task is
also used to debounce the hardware).

Release key for certain
amount of time.

Timer task reenables the hardware button interrupts.

Pen stroke in Graffiti
area of digitizer.

System manager calls the Graffiti recognizer, which then
removes the stroke from the pen queue, converts the stroke
into one or more key events, and finally enqueues these key
events into the key queue.

Pen stroke on silk-
screened icons.

System event manager converts the stroke into the
appropriate key event and enqueues it into the key queue.
74 Palm OS Programmer’s Companion



Event Loop
Low-Level Event Management
System Event Manager Summary

System Event Manager Functions

Main Event Queue Management

EvtGetEvent EvtEventAvail

EvtSysEventAvail EvtAddEventToQueue

EvtAddUniqueEventToQueue EvtCopyEvent

Pen Queue Management

EvtPenQueueSize EvtDequeuePenPoint

EvtDequeuePenStrokeInfo EvtFlushNextPenStroke

EvtFlushPenQueue EvtGetPen

EvtGetPenBtnList

Key Queue Management

EvtKeyQueueSize EvtEnqueueKey

EvtFlushKeyQueue EvtKeyQueueEmpty

Handling pen strokes and key strokes

EvtEnableGraffiti EvtProcessSoftKeyStroke

Handling power on and off events

EvtResetAutoOffTimer EvtWakeup
Palm OS Programmer’s Companion 75





5
User Interface
This chapter describes the user interface elements that you can use
in your application. To create a user interface element, you create a
resource that defines what that element looks like and where it is
displayed. You interact with the element programmatically as a UI
object. A Palm OS® UI object is a C structure that’s linked with one
or more items on the screen. Note that Palm UI objects are just
structures, not the more elaborate objects found in some systems.
This is useful because a C structure is more compact than other
objects could be.

This chapter introduces each of the user interface objects. It also
describes Palm system managers that aid in working with the user
interface. It covers:

• Palm OS Resource Summary

• Drawing on the Palm OS Device

• Forms, Windows, and Dialogs

• Controls

• Fields

• Menus

• Tables

• Lists

• Categories

• Bitmaps

• Labels

• Scroll Bars

• Custom UI Objects

• Dynamic UI

• Color and Grayscale Support

• Insertion Point
Palm OS Programmer’s Companion 77



User Interface
Palm OS Resource Summary
• Text

• Receiving User Input

• Application Launcher

For guidelines on creating a user interface, see the chapter “Good
Design Practices” earlier in this book.

Palm OS Resource Summary
The Palm OS development environment provides a set of resource
templates that application developers use to implement the buttons,
dialogs, and other UI elements. Table 5.1 maps user interface
elements to resources. The ResEdit name is included for developers
using that tool. It’s not relevant for Palm OS Constructor users.

All resources are discussed in detail in the chapter “Palm OS
Resources” on page 77 of the Palm OS SDK Reference. Specific design
recommendations for some of the elements are provided in the
chapter “Good Design Practices” in “User Interface Guidelines.”

Table 5.1 UI resource summary

UI Element and Functionality Example Resource(s)

Command button—
Execute command.

Button (tBTN)

Push button (also called radio
button)—
Select a value

Push button (tPBN)

Hot text entry—
Invoke dialog that changes text
of the button.

Selector trigger (tSLT)

Increment arrow—
Increment/decrement values, or
scroll.

Button (tBTN) or
repeating button
(tREP)

Check box—
Toggle on or off.

Checkbox (tCBX)
78 Palm OS Programmer’s Companion



User Interface
Drawing on the Palm OS Device
Drawing on the Palm OS Device
The first Palm OS® platform devices have an LCD screen of 160x160
pixels. The built-in LCD controller maps a portion of system
memory to the LCD. This controller can support 2 bits/pixel
grayscale; however, the Palm OS software only supported 1 bit/
pixel monochrome graphics until version 3.0. Two bits/pixel
support was added in Palm OS 3.0 and 4 bits/pixel in Palm OS 3.3.
Palm OS 3.5 introduces support for both grayscale and color
displays, with system palettes of either 1, 2, 4, or 8 bits/pixel. (See
“Color and Grayscale Support” for more information.) Hardware
may still limit the actual displayable depths.

Usually, the form manager handles all necessary drawing and
redrawing to the screen when it receives certain events. (In Palm OS,

Popup list—
Choose a setting from a list.

Popup trigger (tPUT)
Popup list (tPUL)
List (tLST)

Menu—
Execute commands not found
on screen as buttons and so on.

Menu Bar (MBAR)
Menu (MENU)

Text field—
Display text (single or multiple
lines).

Field (tFLD)

Scroll bar—
Use together with fields or
tables.

Scroll bar (tSCL)

Table 5.1 UI resource summary (continued)

UI Element and Functionality Example Resource(s)
Palm OS Programmer’s Companion 79



User Interface
Drawing on the Palm OS Device
a form is analogous to a window in a desktop application, and a
window is an abstract drawing region.) You don’t have to explicitly
call drawing routines. However, if you’re performing animation or
if you have any custom user interface objects (known as gadgets),
you might need to use the drawing functions provided by the
window manager.

The window manager defines a window object and provides
functions for drawing to windows. A window is a drawing region
that is either onscreen or offscreen. The window’s data structure
contains a bitmap that contains the actual data displayed in the
window. Windows add clipping regions over the top of bitmaps.

The Draw State
The window manager also defines a draw state: pen color, pattern,
graphics state, and so on. The draw state is handled differently
depending on the operating system version.

On pre-3.5 versions of Palm OS, the system maintains several
individual global variables that each track an element of the draw
state. If you want to change some aspect of the draw state, you use a
WinSet ... function (such as WinSetUnderlineMode ). Each
WinSet ... function returns the old value. It’s your responsibility to
save the old value returned by the function and to restore the
variable’s value when you are finished by calling the function again.
Using such routines can be inconvenient because it means using
application stack space to track system state. Further, if a caller
forgets to restore the value, the entire look and feel of the device
may be altered.

Palm OS 3.5 introduces two improvements to make tracking
changes to the draw state easier. First, it groups the drawing-related
global variables and treats them as a single unit. This draw state is
the Palm OS implementation of a pen. It contains the current
transfer (or draw) mode, pattern mode and pattern data for
WinFill ... routines, and foreground and background colors. It also
contains text-related drawing information: the font ID, the font
pointer, the underline mode, and the text color. (Palm OS does not
currently support other common pen-like concepts such as line
width, pen shape, or corner join.) Only one draw state exists in the
system.
80 Palm OS Programmer’s Companion



User Interface
Drawing on the Palm OS Device
Second, Palm OS 3.5 can track changes to the draw state by storing
states on a stack. Your application no longer needs to use its own
stack for pieces of the draw state. Instead, use WinPushDrawState
to push a copy of the current draw state on the top of the stack. Then
use the existing WinSet... functions to make your changes. When
you’ve finished your drawing and want to restore the draw state,
call WinPopDrawState .

The new drawing state stack allows for additional debugging help.
If an application exits without popping sufficiently or it pops too
much, this is detected and flagged on debug ROMs. When
switching applications, the system pops to a default state on
application exit, guaranteeing a consistent draw state when a new
application is launched.

Drawing Functions
The window manager can draw rectangles, lines, characters,
bitmaps, and (starting in version 3.5) pixels. The window manager
supports five flavors of most calls:

Table 5.2 Window manager drawing operations

Mode Operation

Draw Render object outline only, using current foreground
color and pattern. For a bitmap, draws the bitmap.

Fill Render object internals only, using current
foreground color and pattern.

Erase Erase object outline and internals to window
background color.

Invert Swap foreground and background colors within
region defined by object.

Paint Supported only in version 3.5 and higher. Render
object using all of the current draw state: transfer
mode, foreground and background colors, pattern,
font, text color, and underline mode.
Palm OS Programmer’s Companion 81



User Interface
Forms, Windows, and Dialogs
The drawing functions always draw to the current draw window.
This window may be either an onscreen window or an offscreen
window. Use WinSetDrawWindow  to set the draw window before
calling these functions.

Forms, Windows, and Dialogs
A form is the GUI area for each view of your application. For
example the Address Book offers an Address List view, Address
Edit view, and so on. Each application has to have one form, and
most applications have more than one. To actually create the view,
you have to add other UI elements to the form; either by dragging
them onto the form from the catalog or by providing their ID as the
value of some of the form’s fields.

Figure 5.1 shows an example of a form. Typical forms are as large as
the screen, as shown here. Other forms are modal dialogs, which are
shorter than the screen but just as wide.

Figure 5.1 Form

A window defines a drawing region. This region may be on the
display or in a memory buffer (an off-screen window). Off-screen
windows are useful for saving and restoring regions of the display
that are obscured by other UI objects. All forms are windows, but
not all windows are forms.
82 Palm OS Programmer’s Companion



User Interface
Forms, Windows, and Dialogs
The window object is the portion of the form object that determines
how the form’s window looks and behaves. A window object
contains viewing coordinates of the window and clipping bounds.

When a form is opened, a frmOpenEvent  is triggered and the
form’s ID is stored. A winExitEvent is triggered whenever a form
is closed, and a winEnterEvent  is triggered whenever a form is
drawn.

The following two sections describe special types of forms:

• Alert Dialogs

• Progress Dialogs

Alert Dialogs
If you want to display an alert dialog (see Figure 5.2) or prompt the
user for a response to a question, use the alert manager. The alert
manager defines the following functions:

• FrmAlert

• FrmCustomAlert

Figure 5.2 Alert dialog

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the
buttons in the dialog, the alert manager disposes of the dialog box
and returns to the caller the item number of the button the user
tapped.

There are four types of system-defined alerts:

• Question

• Warning

• Notification
Palm OS Programmer’s Companion 83



User Interface
Forms, Windows, and Dialogs
• Error

The alert type determines which icon is drawn in the alert window
and which sound plays when the alert is displayed.

When the alert manager is invoked, it’s passed an alert resource (see
the chapter “Palm OS Resources” in the Palm OS SDK Reference) that
contains the following information:

• The rectangle that specifies the size and position of the alert
window

• The alert type (question, warning, notification, or error)

• The null-terminated text string; that is, the message the alert
displays

• The text labels for one or more buttons

Progress Dialogs
If your application performs a lengthy process, such as data transfer
during a communications session, consider displaying a progress
dialog to inform the user of the status of the process. The progress
manager provides the mechanism to display progress dialogs.

You display a progress dialog by calling PrgStartDialog . Then,
as your process progresses, you call PrgUpdateDialog  to update
the dialog with new information for the user. In your event loop you
call PrgHandleEvent to handle the progress dialog update events
queued by PrgUpdateDialog . The PrgHandleEvent  function
makes a callback to a textCallback  function that you supply to
get the latest progress information.

Note that whatever operation you are doing that is the lengthy
process, you do the work inside your normal event loop, not in the
callback function. That is, you call EvtGetEvent  and do work
when you get a nilEvent . Each time you get a nilEvent , do a
chunk of work, but be sure to continue to call EvtGetEvent
frequently (like every half second), so that pen taps and other events
get noticed quickly enough.

The dialog can display a few lines of text that are automatically
centered and formatted. You can also specify an icon that identifies
the operation in progress. The dialog has one optional button that
can be a cancel or an OK button. The type of the button is
84 Palm OS Programmer’s Companion



User Interface
Forms, Windows, and Dialogs
automatically controlled by the progress manager and depends on
the current progress state (no error, error, or user canceled
operation).

Progress textCallback Function

When you want to update the progress dialog with new
information, you call the function PrgUpdateDialog . To get the
current progress information to display in the progress dialog,
PrgHandleEvent makes a callback to a function, textCallback ,
that you supplied in your call to PrgStartDialog .

The system passes the textCallback  function one parameter, a
pointer to a PrgCallbackData  structure. To learn what type of
information is passed in this structure, see the chapter “Progress
Manager” in the Palm OS SDK Reference.

Your textCallback  function should return a Boolean. Return
true if the progress dialog should be updated using the values you
specified in the PrgCallbackData structure. If you specify false ,
the dialog is still updated, but with default status messages.
(Returning false  is not recommended.)

In the textCallback  function, you should set the value of the
textP  buffer to the string you want to display in the progress
dialog when it is updated. You can use the value in the stage  field
to look up a message in a string resource. You also might want to
append the text in the message  field to your base string. Typically,
the message  field would contain more dynamic information that
depends on a user selection, such as a phone number, device name,
or network identifier, etc.

For example, the PrgUpdateDialog  function might have been
called with a stage  of 1 and a messageP  parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer textP .

Keeping the static strings corresponding to various stages in a
resource makes it easier to localize your application. More dynamic
information can be passed in via the messageP  parameter to
PrgUpdateDialog .
Palm OS Programmer’s Companion 85



User Interface
Controls
NOTE: The textCallback  function is called only if the
parameters passed to PrgUpdateDialog  have changed from
the last time it was called. If PrgUpdateDialog  is called twice
with exactly the same parameters, the textCallback function is
called only once.

Controls
Control objects allow for user interaction when you add them to the
forms in your application. Events in control objects are handled by
CtlHandleEvent . There are several types of control objects, which
are all described in this section.

NOTE: Palm OS 3.5 and higher support graphical controls for all
control types other than check box. Graphical controls behave the
same as their non-graphical counterparts, but they display a
bitmap instead of a text label. On releases prior to Palm OS 3.5,
you can create a graphical control by setting the text label to the
empty string and placing the control on top of a bitmap.

Buttons
Buttons (see Figure 5.3) display a text label in a box. The default
style for a button is a text string centered within a rounded
rectangle. Buttons have rounded corners unless a rectangular frame
is specified. A button without a frame inverts a rounded rectangular
region when pressed.

When the user taps a button with the pen, the button highlights
until the user releases the pen or drags it outside the bounds of the
button.

Table 5.3 shows the system events generated when the user interacts
with the button and CtlHandleEvent ’s response to the events.
86 Palm OS Programmer’s Companion



User Interface
Controls
Figure 5.3 Buttons

Popup Trigger
A popup trigger (see Figure 5.4) displays a text label and a graphic
element (always on the left) that signifies the control initiates a
popup list. If the text label changes, the width of the control expands
or contracts to the width of the new label plus the graphic element.

Table 5.4 shows the system events generated when the user interacts
with the popup trigger and CtlHandleEvent ’s response to the
events. Because popup triggers are used to display list objects, also
see the section “Lists” in this chapter.

Figure 5.4 Popup trigger

Table 5.3 Event flow for buttons

User Action System Response CtlHandleEvent Response

Pen goes down on a
button.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
button’s ID number.

Inverts the button’s display.

Pen is lifted from
button.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlSelectEvent to the
event queue.

Pen is lifted outside
button.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlExitEvent  to
the event queue.
Palm OS Programmer’s Companion 87



User Interface
Controls
Selector Trigger
A selector trigger (see Figure 5.5) displays a text label surrounded
by a gray rectangular frame. If the text label changes, the width of
the control expands or contracts to the width of the new label.

Table 5.5 shows the system events generated when the user interacts
with the selector trigger and CtlHandleEvent ’s response to the
events.

Figure 5.5 Selector trigger

Table 5.4 Event flow for popup triggers

User Action System Response CtlHandleEvent Response

Pen goes down on the
popup trigger.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent with popup
trigger’s ID number.

Inverts the trigger’s display.

Pen is lifted from
button.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlSelectEvent
to the event queue.

ctlSelectEvent  with
popup trigger’s ID number.

Adds a winEnterEvent  for
the list object’s window to the
event queue. Control passes
to FrmHandleEvent , which
displays the list. Control then
passes to LstHandleEvent .

Pen is lifted outside
button.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlExitEvent  to
the event queue.
88 Palm OS Programmer’s Companion



User Interface
Controls
Repeating Button
A repeat control looks like a button. In contrast to buttons, however,
users can repeatedly select repeat controls if they don’t lift the pen
when the control has been selected. The object is selected repeatedly
until the pen is lifted.

Table 5.6 shows the system events generated when the user interacts
with the selector trigger and CtlHandleEvent ’s response to the
events.

Table 5.5 Event flow for selector triggers

User Action System Response CtlHandleEvent Response

Pen goes down on a
selector trigger.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
selector trigger’s ID number.

Inverts the button’s display.

Pen is lifted from the
selector trigger.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlSelectEvent
to the event queue.

ctlSelectEvent  with
selector trigger’s ID number.

Adds a frmOpenEvent
followed by a
winExitEvent  to the event
queue. Control is passed to
the form object.

Table 5.6 Event flow for repeating buttons

User Action System Response CtlHandleEvent Response

Pen goes down on a
repeating button.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
button’s ID number.

Adds the ctlRepeatEvent
to the event queue.
Palm OS Programmer’s Companion 89



User Interface
Controls
Push Buttons
Push buttons (see Figure 5.6) look like buttons, but the frame always
has square corners. Touching a push button with the pen inverts the
bounds. If the pen is released within the bounds, the button remains
inverted.

Table 5.7 shows the system events generated when the user interacts
with the push button and CtlHandleEvent ’s response to the
events.

Figure 5.6 Push buttons
.

Pen remains on
repeating button.

ctlRepeatEvent Tracks the pen for a period of
time, then sends another
ctlRepeatEvent  if the pen
is still within the bounds of
the control.

Pen is dragged off the
repeating button.

No ctlRepeatEvent
occurs.

Pen is dragged back
onto the button.

ctlRepeatEvent See above.

Pen is lifted from
button.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlExitEvent  to
the event queue.

Table 5.6 Event flow for repeating buttons (continued)

User Action System Response CtlHandleEvent Response
90 Palm OS Programmer’s Companion



User Interface
Controls
Check Boxes
Check boxes (see Figure 5.7) display a setting, either on (checked) or
off (unchecked). Touching a check box with the pen toggles the
setting. The check box appears as a square, which contains a check
mark if the check box’s setting is on. A check box can have a text
label attached to it; selecting the label also toggles the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.

Table 5.8 shows the system events generated when the user interacts
with the check box and CtlHandleEvent ’s response to the events.

Figure 5.7 Check boxes

Table 5.7 Event flow for push buttons

User Action System Response CtlHandleEvent Response

Pen goes down on a
push button.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with push
button’s ID number.

If push button is grouped and
highlighted, no change. If
push button is ungrouped
and highlighted, it becomes
unhighlighted.

Pen is lifted from
push button.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlSelectEvent
to the event queue.
Palm OS Programmer’s Companion 91



User Interface
Controls
Sliders and Feedback Sliders
Starting in Palm OS 3.5, slider controls (see Figure 5.8) are
supported. Sliders represent a value that falls within a particular
range. For example, a slider might represent a value that can be
between 0 and 10.

Figure 5.8 Slider

There are four attributes that are unique to slider controls:

Table 5.8 Event flow for check boxes

User Action Event Generated CtlHandleEvent Response

Pen goes down
on check box.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to the
event queue.

ctlEnterEvent  with check
box’s ID number.

Tracks the pen until the user lifts
it.

Pen is lifted from
check box.

penUpEvent  with the x and
y coordinates stored in
EventType .

• If the check box is
unchecked, a check
appears.

• If the check box is already
checked and is grouped,
there is no change in
appearance.

• If the check box is already
checked and is ungrouped,
the check disappears.

Adds the ctlSelectEvent  to
the event queue.

Pen is lifted
outside box.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlExitEvent  to the
event queue.
92 Palm OS Programmer’s Companion



User Interface
Controls
• The minimum value the slider can represent

• The maximum value the slider can represent

• The current value

• The page jump value, or the amount by which the value is
increased or decreased when the user clicks to the left or
right of the slider thumb

Palm OS supports two types of sliders: regular slider and feedback
slider. Sliders and feedback sliders look alike but behave differently.
Specifically, a regular slider control does not send events while the
user is dragging its thumb. A feedback slider control sends an event
each time the thumb moves one pixel, whether the pen has been
lifted or not.

Table 5.9 shows the system events generated when the user
interfaces with a slider and how CtlHandleEvent responds to the
events.

Table 5.9 Event flow for sliders

User Action System Response CtlHandleEvent Response

Pen tap on slider’s
background.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
slider’s ID number.

Adds or subtracts the slider’s
page jump value from its
current value, and adds a
ctlSelectEvent  with the
new value to the event queue.

Pen goes down on the
slider’s thumb.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
slider’s ID number.

Tracks the pen.
Palm OS Programmer’s Companion 93



User Interface
Controls
Table 5.10 shows the system events generated when the user
interacts with a feedback slider and CtlHandleEvent ’s response
to the events.

Pen drags slider’s
thumb to the left or
right.

Continues tracking the pen.

Pen is lifted from
slider.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlSelectEvent
with the slider’s ID number
and new value if the
coordinates are within the
bounds of the slider.

Adds the ctlExitEvent  if
the coordinates are outside of
the slider’s bounds.

Table 5.9 Event flow for sliders (continued)

User Action System Response CtlHandleEvent Response

Table 5.10 Event flow for feedback sliders

User Action System Response CtlHandleEvent Response

Pen tap on slider’s
background.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
slider’s ID number.

Adds or subtracts the slider’s
page jump value from its
current value and then sends
a ctlRepeatEvent with the
slider’s new value.
94 Palm OS Programmer’s Companion



User Interface
Controls
Sliders are drawn using two bitmaps: one for the slider background,
and the other for the thumb. You may use the default bitmaps to

ctlRepeatEvent Adds or subtracts the slider’s
page jump value from its
current value repeatedly until
the thumb reaches the pen
position or the slider’s
minimum or maximum. Then
sends a ctlSelectEvent
with slider’s ID number and
new value.

Pen goes down on the
slider’s thumb.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent  with
slider’s ID number.

Tracks the pen and updates
the display.

Pen drags slider’s
thumb to the left or
right.

ctlRepeatEvent  with
slider’s ID number and new
value.

Tracks the pen. Each time pen
moves to the left or right,
sends another
ctlRepeatEvent  if the pen
is still within the bounds of
the control.

Pen is dragged off the
slider vertically.

ctlRepeatEvent  with the
slider’s ID number and old
value.

Pen is dragged back
onto the slider.

ctlRepeatEvent  with the
slider’s ID number and new
value.

Pen is lifted from
slider.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the ctlExitEvent  to
the event queue.

Table 5.10 Event flow for feedback sliders (continued)

User Action System Response CtlHandleEvent Response
Palm OS Programmer’s Companion 95



User Interface
Controls
draw sliders, or you may specify your own bitmaps when you
create the slider.

The background bitmap you provide can be smaller than the
slider’s bounding rectangle. This allows you to provide one bitmap
for sliders of several different sizes. If the background bitmap isn’t
as tall as the slider’s bounding rectangle, it’s vertically centered in
the rectangle. If the bitmap isn’t as wide as the slider’s bounding
rectangle, the bitmap is drawn twice. First, it’s drawn left-justified
in the left half of the bounding rectangle and clipped to exactly half
of the rectangle’s width. Then, it’s drawn right-justified in the right
half of the bounding rectangle and clipped to exactly half of the
rectangle’s width. (See Figure 5.9.) Note that this means that the
bitmap you provide must be at least half the width of the bounding
rectangle.

Figure 5.9 Drawing a slider background

Draw in left half and clip

Draw in right half and clip

Result

Background bitmap for slider
96 Palm OS Programmer’s Companion



User Interface
Fields
Fields
A field object displays one or more lines of text. Figure 5.10 is an
underlined, left-justified field containing data.

Figure 5.10 Field

The field object supports these features:

• Proportional fonts (only one font per field)

• Drag-selection

• Scrolling for multiline fields

• Cut, copy, and paste

• Left and right text justification

• Tab stops

• Editable/noneditable attribute

• Expandable field height (the height of the field expands as
more text is entered)

• Underlined text (each line of the field is underlined)

• Maximum character limit (the field stops accepting
characters when the maximum is reached)

• Special keys (Graffiti® strokes) to support cut, copy, and
paste

• Insertion point positioning with pen (the insertion point is
positioned by touching the pen between characters)

• Scroll bars

The field object does not support overstrike input mode; horizontal
scrolling; numeric formatting; or special keys for page up, page
down, left word, right word, home, end, left margin, right margin,
and backspace. On Palm OS Versions earlier than 3.5, the field object
also does not support word selection. Starting in version 3.5,
double-tapping a word selects that word, and triple-tapping selects
the entire line.
Palm OS Programmer’s Companion 97



User Interface
Fields
NOTE: Field objects can handle line feeds—\0A—but not
carriage returns—\0D. PalmRez translates any carriage returns it
finds in any Palm OS resources into line feeds, but doesn’t touch
static data.

Events in field objects are handled by FldHandleEvent . Table 5.11
provides an overview of how FldHandleEvent  deals with the
different events

Table 5.11 Event flow for fields

User Action Event Generated FldHandleEvent Response

Pen goes down on a
field.

penDownEvent  with the x
and y coordinates stored in
EventType .

Adds the fldEnterEvent  to
the event queue.

fldEnterEvent  with the
field’s ID number.

Sets the insertion point
position to the position of the
pen and tracks the pen until it
is released. Drag-selection and
drag-scrolling are supported.

Starting in Palm OS release
3.5, double-tapping in a field
selects the word at that
location, and triple-tapping
selects the line.

Pen is lifted. penUpEvent with the x and y
coordinates.

Nothing happens; a field
remains selected until another
field is selected or the form
that contains the field is
closed.

Enters characters
into selected field.

keyDownEvent  with
character value in
EventType .

Character added to field’s text
string.

Presses up arrow
key

keyDownEvent Moves insertion point up a
line.
98 Palm OS Programmer’s Companion



User Interface
Menus
Menus
A menu bar is displayed whenever the user taps a menu icon.
Starting in Palm OS 3.5, the menu bar is also displayed when the
user taps in a form’s titlebar. The menu bar, a horizontal list of menu
titles, appears at the top of the screen in its own window, above all
application windows. Pressing a menu title highlights the title and
“pulls down” the menu below the title (see Figure 5.11).

Presses down arrow keyDownEvent Moves insertion point down a
line; the insertion point
doesn’t move beyond the last
line that contains text.

Presses left arrow keyDownEvent Moves insertion point one
character position to the left.
When the left margin is
reached, move to the end of
the previous line.

Presses right arrow keyDownEvent Moves insertion point one
character position to the right.
When the right margin is
reached, move to the start of
the next line.

Cut command keyDownEvent Cuts the current selection to
the text clipboard.

Copy command keyDownEvent Copies the current selection to
the text clipboard.

Paste command keyDownEvent Inserts clipboard text into the
field at insertion point.

Table 5.11 Event flow for fields (continued)

User Action Event Generated FldHandleEvent Response
Palm OS Programmer’s Companion 99



User Interface
Menus
Figure 5.11 Menu

User actions have the following effect on a menu:

A menu has the following features:

• Item separators, which are lines to group menu items.

• Keyboard shortcuts; the shortcut labels are right justified in
menu items.

• A menu remembers its last selection; the next time a menu is
displayed the prior selection appears highlighted.

Menu item

Separator

Shortcut

Menu barMenu name

When... Then...

User drags the pen
through the menu.

Command under the pen is highlighted.

Pen is released over a
menu item.

That item is selected and the menu bar
and menu disappear.

Pen is released
outside both the
menu bar and the
menu.

Both menu and menu bar disappear and
no selection is made.

Pen is released in a
menu title.

Menu bar and Menu remain displayed
until a selection is made from the menu.

Pen is tapped outside
menu and menu bar.

Both menu and menu bar are dismissed.

User selects a
separator with the
pen.

Menu is dismissed but no event is posted.
100 Palm OS Programmer’s Companion



User Interface
Menus
• The bits behind the menu bar and the menus are saved and
restored by the menu routines.

• When the menu is visible, the insertion point is turned off.

Menu events are handled by MenuHandleEvent . Table 5.12
describes how user actions get translated into events and what
MenuHandleEvent  does in response.

Dynamic Menus
In releases of Palm OS prior to release 3.5, the menu was loaded
from a menu resource (created with Constructor or some other tool)
and could not be modified in code. Starting in Palm OS 3.5, you can
add, hide, or unhide menu items while the menu resource is being
loaded.

A menuOpenEvent is sent when the menu resource is loaded. (Note
that this event is new in version 3.5. Previous releases do not use it.)
In response to this event, you can call MenuAddItem to add a menu
item to one of the pull-down menus, MenuHideItem  to hide a
menu item, or MenuShowItem  to display a menu item.

You might receive menuOpenEvent  several times during an
application session. The menu resource is loaded each time the
menu is made the active menu. A menu becomes active the first
time the user either requests that the menu be displayed or enters
the command keystroke on the current form. That menu remains
active as long as the form with which it is associated is active. A
menu loses its active status under these conditions:

• When FrmSetMenu  is called to change the active menu on
the form.

Table 5.12 Event flow for menus

User Action Event Generated MenuHandleEvent
Response

Pen enters menu
bar.

winEnterEvent  identifying
menu’s window.

Tracks the pen.

User selects a menu
item.

penUpEvent with the x and y
coordinates.

Adds a menuEvent  with the
item’s ID to the event queue.
Palm OS Programmer’s Companion 101



User Interface
Menus
• When a new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,
which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time the user requests the menu, the menu resource is reloaded,
and a new menuOpenEvent  is queued.

You should only make changes to a menu the first time it is loaded
after a form becomes active. You should not add, hide, or show
items based on user context. Such practice is discouraged in the
Palm OS user interface guidelines.

Menu Shortcuts
As an alternative to selecting a menu command through the user
interface, users can instead enter a menu shortcut. This support is
present in all versions of the Palm OS, but it has been extended in
Palm OS 3.5.

On all versions of Palm OS, the user can enter a Graffiti command
keystroke followed by another Graffiti character. If the next
character matches one of the shortcut characters for an item on the
active menu, a menuEvent  with that menu item is generated. To
support this behavior, you simply specify a shortcut character when
you create a menu item resource. The default behavior of Palm OS
handles this shortcut appropriately.

Starting in Palm OS 3.5, entering the Graffiti command character
displays the command toolbar (see Figure 5.12). This toolbar is the
width of the screen. (Previous versions of Palm OS simply display
the string “Command:” in the lower-left portion of the screen.) The
command toolbar displays a status message on the left and buttons
on the right. After entering the command character, the user has the
choice of entering a Graffiti character or of tapping one of the
buttons on the command toolbar. Both of these actions cause the
status message to be briefly displayed and (in most cases) a
menuEvent  to be added to the event queue.
102 Palm OS Programmer’s Companion



User Interface
Menus
Figure 5.12 Command Toolbar

The buttons displayed on the toolbar depend on the user context. If
the focus is in an editable field, the field manager displays buttons
for cut, copy, and paste on the command toolbar. If there is an action
to undo, the field manager also displays a button for undo.

The active application may also add its own buttons to the toolbar.
To do so, respond to the menuCmdBarOpenEvent  and use
MenuCmdBarAddButton to add the button. Listing 5.1 shows some
code from the Memo application that adds to the command toolbar
a button that displays the security dialog and then prevents the field
manager from adding other buttons.

Listing 5.1 Responding to menuCmdBarOpenEvent

else if (event->eType == menuCmdBarOpenEvent) {

MenuCmdBarAddButton(menuCmdBarOnLeft,
BarSecureBitmap, menuCmdBarResultMenuItem,
ListOptionsSecurityCmd, 0);

// Tell the field package to not add buttons
// automatically; we've done it all ourselves.
event->data.menuCmdBarOpen.preventFieldButtons =

true;

// Don't set handled to true; this event must
// fall through to the system.

}

The system contains bitmaps that represent such commands as
beaming and deleting records. If your application performs any of
these actions, it should use the system bitmap. Table 5.13 shows the
system bitmaps and the commands they represent. If you use any of
these, you should use them in the order shown, from right to left.
That is, BarDeleteBitmap  should always be the rightmost of
these bitmaps, and BarInfoBitmap should always be the leftmost.
Palm OS Programmer’s Companion 103



User Interface
Tables
You should limit the buttons displayed on the command toolbar to 4
or 5. There are two reasons to limit the number of buttons. You must
leave room for the status message to be displayed before the action
is performed. Also, consider that the toolbar is displayed only
briefly. Users must be able to instantly understand the meaning of
each of the buttons on the toolbar. If there are too many buttons, it
reduces the chance that users can find what they need.

Note that the field manager already potentially displays 4 buttons
by itself. If you want to suppress this behavior and display your
own buttons when a field has focus, set the
preventFieldButtons  flag of the menuCmdBarOpenEvent  to
true  as is shown in Listing 5.1.

Tables
Tables support multi-column displays. Examples are:

• the List view of the ToDo application

• the Day view in the Datebook

The table object is used to organize several types of UI objects. The
number of rows and the number of columns must be specified for
each table object. A UI object can be placed inside a cell of a table.

Table 5.13 System command toolbar bitmaps

Bitmap Command

BarDeleteBitmap Delete record.

BarPasteBitmap Paste clipboard contents at insertion point.

BarCopyBitmap Copy selection.

BarCutBitmap Cut selection.

BarUndoBitmap Undo previous action.

BarSecureBitmap Show Security dialog.

BarBeamBitmap Beam current record.

BarInfoBitmap Show Info dialog (Launcher).
104 Palm OS Programmer’s Companion



User Interface
Lists
Tables often consist of rows or columns of the same object. For
example, a table might have one column of labels and another
column of fields. Tables can only be scrolled vertically. Tables can’t
include bitmaps.

A problem may arise if non-text elements are used in the table. For
example, assume you have a table with two columns. In the first
column is an icon that displays information, the second column is a
text column. The table only allows users to select elements in the
first column that are as high as one row of text. If the icon is larger,
only a narrow strip at the top of the column can be selected.

Table Event
The table object generates the event tblSelectEvent . This event
contains:

• The table’s ID number

• The row of the selected table

• The column of the selected table

When tblSelectEvent  is sent to a table, the table generates an
event to handle any possible events within the item’s UI object.

Lists
The list object appears as a vertical list of choices in a box. The
current selection of the list is inverted.

Figure 5.13 List

A list is meant for static data. Users can choose from a
predetermined number of items. Examples include:

• the time list in the time edit window of the datebook
Palm OS Programmer’s Companion 105



User Interface
Lists
• the Category popup list (see “Categories” in this chapter)

If there are more choices than can be displayed, the system draws
small arrows (scroll indicators) in the right margin next to the first
and last visible choice. When the pen comes down and up on a
scroll indicator, the list is scrolled. When the user scrolls down, the
last visible item becomes the first visible item if there are enough
items to fill the list. If not, the list is scrolled so that the last item of
the list appears at the bottom of the list. The reverse is true for
scrolling up. Scrolling doesn’t change the current selection.

Bringing the pen down on a list item unhighlights the current
selection and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the
current selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent  is highlighted
again if it’s visible. If it’s not, no item is highlighted.

An application can use a list in two ways:

• Initialize a structure with all data for all entries in the list and
let the list manage its own data.

• Provide list drawing functions but don’t keep any data in
memory. The list picks up the data as it’s drawing.

Not keeping data in memory avoids unacceptable memory
overhead if the list is large and the contents of the list
depends on choices made by the user. An example would be
a time conversion application that provides a list of clock
times for a number of cities based on a city the user selects.
Note that only lists can pick up the display information on
the fly like this; tables cannot.

Formatting can be an issue for lists: While it’s possible to imitate a
multi-column display, lists really consist of rows of text.

The LstHandleEvent  function handles list events. Table 5.14
provides an overview of how LstHandleEvent  deals with the
different events.
106 Palm OS Programmer’s Companion



User Interface
Categories
Categories
Categories allow you to group records logically into manageable
lists. In the user interface, categories typically appear in a popup list
in a form’s titlebar and in dialogs that allow you to edit a single
database record.

You create a category popup list the same way you create any other
popup list: create the list resource, create the popup trigger control
resource with a width of 0, and set the trigger’s list ID to be the ID of

Table 5.14 Event flow for lists

User Action System Response LstHandleEvent Response

Pen goes down on
popup trigger button.

winEnterEvent  identifying
list’s window.

Adds the lstEnterEvent to
the event queue.

lstEnterEvent  with list’s
ID number and selected item.

Tracks the pen.

Pen goes down on a
list box.

penDownEvent  with the x
and y coordinates stored in
EventType .

Highlights the selection
underneath the pen.

Pen is lifted from the
list box.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds the lstSelectEvent
to the event queue.

lstSelectEvent  with list’s
ID number and number of
selected item.

Stores the new selection. If
the list is associated with a
popup trigger, adds a
popSelectEvent  to the
event queue. with the popup
trigger ID, the popup list ID,
and the item number selected
in EventType . Control
passes to FrmHandleEvent .

Pen is lifted outside
the list box.

penUpEvent  with the x and
y coordinates stored in
EventType .

Adds winExitEvent  to
event queue.
Palm OS Programmer’s Companion 107



User Interface
Categories
the list. You manage the category popup list using the category API
described in the chapter “Categories” on page 139 of the Palm OS
SDK Reference.

For the most part, you can handle a category popup list using only
these calls:

• Call CategoryInitialize  when you create a new
database as described in “Initializing Categories in a
Database” below).

• Call CategorySetTriggerLabel  to set the category
popup trigger’s label when the form is opened (as described
in “Initializing the Category Popup Trigger”).

• Call CategorySelect  when the user selects the category
popup trigger (as described in “Managing a Category Popup
List”).

You typically don’t need to use the other functions declared in
Category.h  unless you want more control over what happens
when the user selects the category trigger.

This section focuses on the user interface aspects of categories. For
information on how categories are stored and how to manage
categories in a database, read Chapter 7, “Files and Databases.”

Initializing Categories in a Database
Before you can use the category API calls, you must set up the
database appropriately. The category functions expect to find
information at a certain location. If the information is not there, the
functions will fail.

Category information is stored in the AppInfoType  structure
within the database’s application info block. As described in the
chapter titled “Files and Databases” in this book, the application
info block may contain any information that your database needs. If
you want to use the category API, the first field in the application
info block must be an AppInfoType  structure.

The AppInfoType  structure maps category names to category
indexes and category unique IDs. Category names are displayed in
the user interface. Category indexes are used to associate a database
record with a category. That is, the database record’s attribute word
contains the index of the category to which the record belongs.
108 Palm OS Programmer’s Companion



User Interface
Categories
Category unique IDs are used when synchronizing the database
with the desktop computer.

To initialize the AppInfoType  structure, you call
CategoryInitialize , passing a string list resource containing
category names. This function creates as many category indexes and
unique IDs as are necessary. You only need to make this call when
the database is first created or when you newly assign the
application info block to the database.

The string list resource contains predefined categories that new
users see when they start the application for the first time. Follow
these guidelines when creating the resource:

• Place any categories that you don’t want the user to be able to
change at the beginning of the list. For example, it’s common
to have at least one uneditable category named Unfiled, so it
should be the first item in the list.

• The string list must have 16 entries. Typically, you don’t
want to predefine 16 categories. You might define one or two
and leave the remaining entries blank. The unused slots
should have 0 length.

• Keep in mind that there is a limit of 16 categories. That
includes both the predefined categories and the categories
your users will create.

• Each category name has a maximum length defined by the
dmCategoryLength  constant (currently, 16 bytes).

• Don’t include strings for “All” or “Edit Categories.” While
these two items often appear in category lists, they are not
categories and they are treated differently by the category
functions.

Listing 5.2 shows an example function that creates and initializes a
database with an application info block. Notice that because the
application info block is stored with the database, you allocate
memory for it using DmNewHandle, not with MemHandleNew.

Listing 5.2 Creating a database with an app info block

typedef struct {
AppInfoType appInfo;
UInt16 myCustomAppInfo;
Palm OS Programmer’s Companion 109



User Interface
Categories
} MyAppInfoType;

Err CreateAndOpenDatabase(DmOpenRef *dbPP, UInt16 mode)
{

Err error = errNone;
DmOpenRef dbP;
UInt16 cardNo;
MemHandle h;
LocalID dbID;
LocalID appInfoID;
MyAppInfoType *appInfoP;

// Create the database.
error = DmCreateDatabase (0, MyDBName, MyDBCreator, MyDBType,

false);
if (error) return error;

// Open the database.
dbP = DmOpenDatabaseByTypeCreator(MyDBType, MyDBCreator, mode);
if (!dbP) return (dmErrCantOpen);

// Get database local ID and card number. We need these to
// initialize app info block.
if (DmOpenDatabaseInfo(dbP, &dbID, NULL, NULL, &cardNo, NULL))

return dmErrInvalidParam;

// Allocate app info in storage heap.
h = DmNewHandle(dbP, sizeof(MyAppInfoType));
if (!h) return dmErrMemError;

// Associate app info with database.
appInfoID = MemHandleToLocalID (h);
DmSetDatabaseInfo(cardNo, dbID, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, &appInfoID, NULL, NULL, NULL);

// Initialize app info block to 0.
appInfoP = MemHandleLock(h);
DmSet(appInfoP, 0, sizeof(MyAppInfoType), 0);

// Initialize the categories.
110 Palm OS Programmer’s Companion



User Interface
Categories
CategoryInitialize ((AppInfoPtr) appInfoP,
MyLocalizedAppInfoStr);

// Unlock the app info block.
MemPtrUnlock(appInfoP);

// Set the output parameter and return.
*dbPP = dbP;
return error;

}

Initializing the Category Popup Trigger
When a form is opened, you need to set the text that the category
popup trigger should display. To do this, use CategoryGetName to
look up the name in the AppInfoType  structure and then use
CategorySetTriggerLabel  to set the popup trigger.

For the main form of the application, it’s common to store the index
of the previously selected category in a preference and restore it
when the application starts up again.

Forms that display information from a single record should show
that record’s category in the popup list. Each database record stores
the index of its category in its attribute word. You can retrieve the
record attribute using DmRecordInfo  and then AND it with the
mask dmRecAttrCategoryMask  to obtain the category index.

Listing 5.3 shows how to set the trigger label to match the category
for a particular database record.

Listing 5.3 Setting the category trigger label

UInt16 attr, category;
Char categoryName [dmCategoryLength];
ControlType *ctl;

// If current category is All, we need to look
// up category.
if (CurrentCategory == dmAllCategories) {

DmRecordInfo (AddrDB, CurrentRecord, &attr,
Palm OS Programmer’s Companion 111



User Interface
Categories
NULL, NULL);
category = attr & dmRecAttrCategoryMask;

} else
category = CurrentCategory;

CategoryGetName (AddrDB, category,
categoryName);

ctl = FrmGetObjectPtr(frm,
FrmGetObjectIndex(frm, objectID));

CategorySetTriggerLabel (ctl, categoryName);

Managing a Category Popup List
When the user taps the category popup trigger, call
CategorySelect . That is, call CategorySelect  in response to a
ctlSelectEvent  when the ID stored in the event matches the ID
of the category’s trigger. The CategorySelect  function displays
the popup list, manages the user selection, displays the Edit
Categories modal dialog as necessary, and sets the popup trigger
label to the item the user selected.

Calling CategorySelect

The following is a typical call to CategorySelect :

categoryEdited = CategorySelect (AddrDB, frm,
ListCategoryTrigger, ListCategoryList, true,
&category, CategoryName, 1,
categoryDefaultEditCategoryString);

This example uses the following as parameters:

• AddrDB  is the database with the categories to be displayed.

• frm , ListCategoryTrigger , and ListCategoryList
identify the form, popup trigger resource, and list resource.

• true indicates that the list should contain an “All” item. The
“All” item should appear only in forms that display multiple
records. It should not appear in forms that display a single
record because selecting it would have no meaning.

• category and CategoryName are pointers to the index and
name of the currently selected category. When you call this
function, these two parameters should specify the category
112 Palm OS Programmer’s Companion



User Interface
Categories
currently displayed in the popup trigger. Unfiled is the
default.

• The number 1 is the number of uneditable categories.
CategorySelect  needs this information when the user
chooses the Edit Categories list item. Categories that the user
cannot edit should not appear in the Edit Categories dialog.

Because uneditable categories are assumed to be at the
beginning of the category list, passing 1 for this parameter
means that CategorySelect does not allow the user to edit
the category at index 0.

• categoryDefaultEditCategoryString  is a constant
that means include an Edit Categories item in the list and use
the default string for its name (“Edit Categories” on US
English ROMs).

To use a different name (for example, if you don’t have
enough room for the default name), pass the ID of a string
resource containing the desired name.

In some cases, you might not want to include the Edit
Categories item. If so, pass the constant
categoryHideEditCategory .

NOTE: The categoryDefaultEditCategoryString  and
categoryHideEditCategory  constants are only defined if 3.5
New Feature Set is present. See the CategorySelect  function
description in the Palm OS SDK Reference for further
compatibility information.

Interpreting the Return Value

The CategorySelect  return value is somewhat tricky:
CategorySelect  returns true  if the user edited the category list,
false  otherwise. That is, if the user chose the Edit Categories item
and added, deleted, or changed category names, the function
returns true . If the user never selects Edit Categories, the function
returns false . In most cases, a user simply selects a different
category from the existing list without editing categories. In such
cases, CategorySelect  returns false .
Palm OS Programmer’s Companion 113



User Interface
Categories
This means you should not rely solely on the return value to see if
you need to take action. Instead, you should store the value that you
passed for the category index and compare it to the index that
CategorySelect  passes back. For example:

Int16 category;
Boolean categoryEdited;

category = CurrentCategory;

categoryEdited = CategorySelect (AddrDB, frm,
ListCategoryTrigger, ListCategoryList, true,
&category, CategoryName, 1,
categoryDefaultEditCategoryString);

if ( categoryEdited ||
(category != CurrentCategory)) {

/* user changed category selection or
edited category list. Do something. */

}

If the user has selected a different category, you probably want to do
one of two things:

• Update the display so that only records in that category are
displayed. See the function ListViewUpdateRecords  in
the Address Book example application for sample code.

• Change the current record’s category from the previous
category to the newly selected category. See the function
EditViewSelectCategory  in the Address Book example
application for sample code.

Note that the CategorySelect  function handles the results of the
Edit Categories dialog for you. It adds, deletes, and renames items
in the database’s AppInfoType  structure. If the user deletes a
category that contains records, it moves those records to the Unfiled
category. If the user changes the name of an existing category to the
name of another existing category, it prompts the user and, if
confirmed, moves the records from the old category to the new
category. Therefore, you never have to worry about managing the
category list after a call to CategorySelect .
114 Palm OS Programmer’s Companion



User Interface
Categories
The Default Application Category
You can store an application’s category in a 'taic'  resource
(symbolically named defaultCategoryRscType ) with the ID
1000 in the .prc  file. Starting in Palm OS 3.5, the Launcher
application installs your application into the specified category. In
Constructor, you can specify the 'taic'  resource by providing a
value for the Default App Category field in the main window.

Most applications should not specify a 'taic' resource. By default,
Launcher installs applications in the Unfiled category, and each user
chooses where to file the application.

Only specify a 'taic'  resource in these instances:

• Your application is intended for consumers and clearly
belongs to one of the Launcher predefined categories (see
Table 5.15).

Always specify the Launcher predefined categories in US
English in ASCII characters. Launcher provides the
appropriate translations for localized ROMs.

• Your application is intended for a vertical market or you’ve
created a suite of custom applications that work together to
provide a complete custom solution.

In this case, you might define a 'taic'  resource with a
custom category name. Launcher creates the category if it
doesn’t already exist in the Launcher database. When you’re
not identifying one of Launcher’s predefined categories, you
may identify the category in any language.

Table 5.15 Launcher predefined categories

Default
Launcher
Category

Description

Games Any game.

Main Applications that would be used on a daily
basis, such as Date Book or Address Book.
Palm OS Programmer’s Companion 115



User Interface
Bitmaps
Do not treat the default application category as something
analogous to the Microsoft Windows Start menu category. On a
Palm OS device, the user is limited to 16 categories including
Unfiled. Obviously, that limit would be quickly reached if each
application defines its own category. Only assign a default category
where it is a clear benefit to your users.

Bitmaps
A bitmap is a graphic displayed by Palm OS. There are several ways
to create a bitmap resource in Constructor:

• If you simply want to display a bitmap at a fixed location on
a form, drag a Form Bitmap object to the form. Assign a
resource ID in the Bitmap ID field, and you can then create a
bitmap resource. The bitmap resource is a 'Tbmp'  resource,
and the Form Bitmap object that contains it is a 'tFBM'
resource.

• If you want to create a bitmap for some other purpose (for
example, to use in animation or to display a gadget), create
either a Bitmap resource or a Bitmap Family resource in the
main project window. In this case, Constructor creates a
'tbmf' resource, and the PalmRez post linker converts it
and its associated PICTs to a 'Tbmp'  resource. (Constructor
creates PICT format images on both the Macintosh and
Microsoft Windows operating systems.)

System Applications that control how the system
behaves, such as the Preferences, HotSync,
and Security.

Utilities Applications that help the user with system
management.

Unfiled The default category.

Table 5.15 Launcher predefined categories (continued)

Default
Launcher
Category

Description
116 Palm OS Programmer’s Companion



User Interface
Bitmaps
A 'Tbmp'  resource defines either a single bitmap or a bitmap
family. A bitmap family is a group of bitmaps, each containing the
same drawing but at a different pixel depth (see Figure 5.14). When
requested to draw a bitmap family, the operating system chooses
the version of the bitmap with the pixel depth equal to the display. If
such a bitmap doesn’t exist, the bitmap with the pixel depth closest
to but less than the display depth is chosen. If there are no bitmaps
less than the display depth, then the bitmap with the pixel depth
closest to the display depth is used.

Programmatically, a bitmap or bitmap family is represented by a
BitmapType  structure. This structure is simply a header. It is
followed by the bitmap data in the same memory block. Bitmaps in
Palm OS 3.0 and higher are also allowed to have their own color
tables. When a bitmap has its own color table, it is stored between
the bitmap header and the bitmap data.

Figure 5.14 Bitmap family

Versions of Bitmap Support
There are three different bitmap encodings:

• Version 0 encoding is supported by all Palm OS releases.

Bitmap
Type
header

Color
table

Bitmap
data

nextDepthOffset

pixelDepth = 1

nextDepthOffset

pixelDepth = 2

nextDepthOffset

pixelDepth = 4 pixelDepth = 8

nextDepthOffset = 0
Palm OS Programmer’s Companion 117



User Interface
Bitmaps
• Version 1 encoding is supported on Palm OS 3.0 and higher.
PalmRez creates version 1 bitmaps unless you’ve explicitly
specified a transparency index or a compression type when
creating the bitmap in Constructor.

• Version 2 encoding is supported on Palm OS 3.5 and higher.
This encoding supports transparency indices and RLE
compression.

With a version 2 bitmap, you can specify one index value as a
transparent color at creation time. The transparency index is
an alternative to masking. The system does not draw bits that
have the transparency index value.

When a bitmap with a transparency index is rendered at a
depth other than the one at which it was created, the
transparent color is first translated to the corresponding
depth color, and the resulting color is named transparent.
This may result in a group of colors becoming transparent.

Drawing a Bitmap
If you use a Form Bitmap object, your bitmap is drawn when the
form is drawn. No extra coding is required on your part.

If you’re not using a Form Bitmap object, to draw the bitmap you
obtain it from the resource database and then call either
WinDrawBitmap  or WinPaintBitmap . (The form manager code
uses WinDrawBitmap  to draw Form Bitmap objects.) If passed a
bitmap family, these two functions draw the bitmap that has the
depth equal to the current draw window depth or the closest depth
that is less than the current draw window depth if available, or the
closest depth greater than the current draw depth if not.

MemHandle resH =
DmGetResource (bitmapRsc, rscID);

BitmapType *bitmap = MemHandleLock (resH);
WinPaintBitmap(bitmap, 0, 0);

If you want to modify a bitmap, starting in Palm OS 3.5 you can
create the bitmap programmatically with BmpCreate , create an
offscreen window wrapper around the bitmap using
WinCreateBitmapWindow , set the active window to the new
118 Palm OS Programmer’s Companion



User Interface
Bitmaps
bitmap window, and use the window drawing functions to draw to
the bitmap:

BitmapType *bmpP;
WinHandle win;
Err error;

bmpP = BmpCreate(10, 10, 8, NULL, &error);
if (bmpP) {

win = WinCreateBitmapWindow(bmpP, &error);
if (win) {

WinSetDrawWindow(win);
WinDrawLines(win, ...);
/* etc */

}
}

BmpCreate  always creates a version 2 bitmap, even if you don’t
specify a transparency or compression.

To learn how to modify a bitmap in releases prior to Palm OS 3.5,
download the Signatures example application from the Knowledge
Base on the Palm OS Developer website.

Color Tables and Bitmaps
As mentioned previously, bitmaps can have their own color tables
attached to them. A bitmap might have a custom color table if it
requires a palette that differs from the default system palettes. If a
bitmap has its own color table, the system must create a conversion
table to convert the color table of the current draw window before it
can draw the bitmap. This conversion is a drain on performance, so
using custom color tables with bitmaps is not recommended if
performance is critical.

As an alternative, if your bitmap needs a custom palette, use the
WinPalette function to change the system palette that is currently
in use, then draw your bitmap. After the bitmap is no longer visible,
use WinPalette again to set the system palette back to its previous
state.
Palm OS Programmer’s Companion 119



User Interface
Labels
Labels
You can create a label in a form by creating a label resource.

The label resource displays noneditable text or labels on a form
(dialog box or full-screen). It’s used, for example, to have text
appear to the left of a checkbox instead of the right.

You don’t interact with a label as a programmatic entity; however,
you can use Form and Control API to create new labels or to change
labels dynamically. See the “Summary of User Interface API” at the
end of this chapter.

Scroll Bars
Palm OS 2.0 and later provides vertical scroll bar support. As a
result, you can attach scroll bars to fields, tables, or lists, and the
system sends the appropriate events when the end user interacts
with the scroll bar (see Figure 5.15).

Figure 5.15 Scroll bar

Here’s what you have to do to include a scroll bar in your user
interface:

scroll car
120 Palm OS Programmer’s Companion



User Interface
Scroll Bars
1. Create a scroll bar (tSCL) UI resource.

Provide the ID and the bounds for the scroll bar rectangle. The
height has to match the object you want to attach it to. The width
should be 7.

2. Provide a minimum and maximum value as well as a page size.

• Minimum is usually 0.

• Maximum is usually 0 and set programmatically.

• The page size determines how many lines the scroll bar
moves when the text scrolls.

3. Make the scroll bar part of the form.

When you compile your application, the system creates the
appropriate scroll bar UI object. (See the chapter “Scroll Bars” in the
Palm OS SDK Reference for more information on the scroll bar UI
object.)

There are two ways in which the scroll bar and the user interface
object that it’s attached to need to interact:

• When the user adds or removes text, the scroll bar needs to
know about the change in size.

To get this functionality, set the hasScrollbar  attribute of
the field, table, or list. (For tables, you must set this
programmatically with the function TblHasScrollBar .)

If hasScrollbar  is set for a field, you’ll receive a
fldChangedEvent  whenever the field’s size changes. Your
application should handle these events by computing new
values for the scroll bar’s minimum, maximum, and current
position and then use SclSetScrollBar  to update it.

If hasScrollbar  is set for a table, you should keep track of
when the table’s size changes. Whenever it does, you should
compute new values for the scroll bar’s minimum,
maximum, and current position and then use
SclSetScrollBar  to update it.

Lists are intended for static data, so you typically don’t have
to worry about the size of a list changing.

You should also call SclSetScrollBar  when the form is
initialized to set the current position of the scroll bar.
Palm OS Programmer’s Companion 121



User Interface
Custom UI Objects
• When the user moves the scroll bar, the text needs to move
accordingly. This can either happen dynamically (as the user
moves the scroll bar) or statically (after the user has released
the scroll bar).

The system sends the following scroll bar events:

– sclEnterEvent  is sent when a penDownEvent  occurs
within the bounds of the scroll bar.

– sclRepeatEvent  is sent when the user drags the scroll
bar.

– sclExitEvent  is sent when the user lifts the pen. This
event is sent regardless of previous sclRepeatEvent s.

Applications that want to support immediate-mode scrolling
(that is, scrolling happens as the user drags the pen) need to
watch for occurrences of sclRepeatEvent . In response to
this event, call the scrolling function associated with the UI
object (FldScrollField , LstScrollList , or your own
scrolling function in the case of tables).

Applications that don’t support immediate-mode scrolling
should ignore occurrences of sclRepeatEvent  and wait
only for the sclExitEvent .

Custom UI Objects
A gadget resource lets you implement a custom UI object. The
gadget resource contains basic information about the custom
gadget, which is useful to the gadget writer for drawing and
processing user input.

You interact with gadgets programmatically using the Form API.
See the “Summary of User Interface API” at the end of this chapter.

A gadget is best thought of as simply a reserved rectangle at a set
location on the form. You must provide all drawing and event
handling code. There is no default behavior for a gadget.

Starting in Palm OS 3.5, you can create an extended gadget. An
extended gadget is simply a gadget with a callback routine
(FormGadgetHandler ) that provides drawing and event handling
code for the gadget. Use FrmSetGadgetHandler  to set the
122 Palm OS Programmer’s Companion



User Interface
Custom UI Objects
callback function. (A pointer to the gadget is passed to the callback,
so you can use the same function for multiple gadgets.) When the
form receives certain requests to draw itself, delete itself, or to hide
or show a gadget object, the form manager calls the gadget handler
function you provide. When the form receives events intended for
the gadget, it passes those to the gadget handler function as well.

In versions prior to 3.5, gadgets do not have a callback function.
Instead, you must write code to draw the gadget and respond to
pen down events in the form’s event handler. Listing 5.4 shows the
event handler for the main form in the Rock Music sample
application. This code makes calls to draw the gadget in response to
a frmOpenEvent  or frmUpdateEvent , and if there is a
penDownEvent  within the bounds of the gadget, it calls a function
to handle that event as well. Listing 5.5 shows how a gadget handler
function might be written for Rock Music.

Listing 5.4 Pre-Palm OS 3.5 gadget example

Boolean MainViewHandleEvent(EventPtr event)
{

Boolean handled = false;
Word objIndex;
FormPtr frm;
RectangleType r;

switch (event->eType) {
case frmOpenEvent:

MainViewInit();
frm = FrmGetActiveForm ();
FrmDrawForm (frm);
DrawGadget();
handled = true;
break;

case frmUpdateEvent:
frm = FrmGetActiveForm ();
FrmDrawForm (frm);
DrawGadget();
handled = true;
break;
Palm OS Programmer’s Companion 123



User Interface
Custom UI Objects
case penDownEvent:
frm = FrmGetActiveForm ();
objIndex = FrmGetObjectIndex (frm,

RockMusicMainInputGadget);
FrmGetObjectBounds (frm, objIndex, &r);
if (RctPtInRectangle (event->screenX,

event->screenY, &r)) {
GadgetTapped ();
handled=true;

}
break;

...
}

Listing 5.5 Palm OS 3.5 gadget example

Boolean GadgetHandler
(struct FormGadgetType *gadgetP, UInt16 cmd,
void *paramP)
{

Boolean handled = false;

switch (cmd) {
case frmGadgetDrawCmd:
//Sent to active gadgets any time form is
//drawn or redrawn.

DrawGadget();
gadgetP->attr.visible = true;
handled = true;
break;

case formGadgetHandleEventCmd:
//Sent when form receives a gadget event.
//paramP points to EventType structure.

if (paramP->eType == fldGadgetEnterEvent) {
// penDown in gadget’s bounds.

GadgetTapped ();
handled = true;
124 Palm OS Programmer’s Companion



User Interface
Dynamic UI
}
if (paramP->eType == frmGadgetMiscEvent) {

//This event is sent by your application
//when it needs to send info to the gadget

}
break;

case formGadgetDeleteCmd:
//Perform any cleanup prior to deletion.
break;

case formGadgetEraseCmd:
//FrmHideObject takes care of this if you
//return false.

handled = false;
break;

}
return handled;

}

Dynamic UI
Palm OS 3.0 and later provides functions that can be used to create
forms and form elements at runtime. Most applications will never
need to change any user interface elements at runtime—the built-in
applications don’t do so, and the Palm user interface guidelines
discourage it. The preferred method of having UI objects appear as
needed is to create the objects in Constructor and set their usable
attributes to false. Then use FrmShowObject and FrmHideObject
to make the object appear and disappear as needed.

Some applications, such as forms packages, must create their
displays at runtime—it is for applications such as these that the
Dynamic UI API is provided. If you’re not absolutely sure that you
need to change your UI dynamically, don’t do it—unexpected
changes to an application’s interface are likely to confuse or
frustrate the end user.

Dynamic user interface objects are subject to the following
limitations:

• You cannot create tables or Graffiti Shift indicators.
Palm OS Programmer’s Companion 125



User Interface
Dynamic UI
• You cannot create buttons (or repeating buttons) having
frames or non-bold frames.

You can use the FrmNewForm function to create new forms
dynamically. Palm’s UI guidelines encourage you to keep popup
dialogs at the bottom of the screen, using the entire screen width.
This isn’t enforced by the routine, but is strongly encouraged in
order to maintain a look and feel that is consistent with the built-in
applications.

The FrmNewLabel , FrmNewBitmap , FrmNewGadget ,
LstNewList , FldNewField  and CtlNewControl  functions can
be used to create new objects on forms.

It is fine to add new items to an active form, but doing so is very
likely to move the form structure in memory; therefore, any pointers
to the form or to controls on the form might change. Make sure to
update any variables or pointers that you are using so that they refer
to the form’s new memory location, which is returned when you
create the object.

The FrmRemoveObject  function removes an object from a form.
This function doesn’t free memory referenced by the object (if any)
but it does shrink the form chunk. For best efficiency when
removing items from forms, remove items in order of decreasing
index values, beginning with the item having the highest index
value. When removing items from a form, you need to be mindful of
the same concerns as when adding items: the form pointer and
pointers to controls on the form may change as a result of any call
that moves the form structure in memory.

When creating forms dynamically, or just to make your application
more robust, use the FrmValidatePtr  function to ensure that
your form pointer is valid and the form it points to is valid. This
routine can catch lots of bugs for you—use it!

Dynamic User Interface Functions
The following API can be used to create forms dynamically:

• CtlNewControl

• CtlValidatePointer

• FldNewField
126 Palm OS Programmer’s Companion



User Interface
Color and Grayscale Support
• FrmNewBitmap

• FrmNewForm

• FrmNewGadget

• FrmNewLabel

• FrmRemoveObject

• FrmValidatePtr

• LstNewList

• WinValidateHandle

• FrmNewGsi  (available only if 3.5 New Feature Set is present)

Color and Grayscale Support
Starting in Palm OS version 3.5, the operating system supports
system palettes of 1, 2, 4, or 8 bits-per-pixel, as follows:

• 1-bit: white (0) and black (1)

• 2-bit: white (0), light gray (1), dark gray (2), and black (3)

• 4-bit: 16 shades of gray, from white (0) to black (0xF)

• 8-bit: 216 color “Web-safe” palette, which includes all
combinations of red, green, and blue at these levels: 0x00,
0x33, 0x66, 0x99, 0xCC, and 0xFF. Also, it includes all 16 gray
shades at these levels: 0x00, 0x11, 0x22, ... 0xFF. Finally, it
includes these extra named HTML colors: 0xC0C0C0 (silver),
0x808080 (gray), 0x800000 (maroon), 0x800080 (purple),
0x008000 (green), and 0x008080 (teal). The remaining 24
entries (indexes 0xE7 through 0xFE) are unspecified and
filled with black. (On debug ROMs they are filled with
random colors to help developers notice if they use an
invalid value.) These entries may be defined by an
application.

Generalized support for color tables in all bit depths is included,
with performance degrading if the color tables are not standard.

Color Table
The system color table is stored in a 'tclt' resource (symbolically
named colorTableRsc ). The color table is a count of the number
Palm OS Programmer’s Companion 127



User Interface
Color and Grayscale Support
of entries, followed by an array of RGBColorType  colors. An
RGBColorType struct holds 8 bits each of red, green, and blue plus
an “extra” byte to hold an index value.

A color’s index is used in different ways by different software
layers. When querying for a color or doing color fitting, the index
holds the index of the closest match to the RGB value in the
reference color table. When setting a color in a color table, the index
can specify which slot the color should occupy. In some routines, the
index is ignored.

Generally, the drawing routines and the operating system use
indexed colors rather than RGB. Indexed colors are used for
performance reasons; it allows the RGB-to-index translation to be
skipped for most drawing operations.

Care should be taken not to confuse a full color table (which
includes the count) with an array of RGB color values. Some
routines operate on entire color tables, others operate on lists of
color entries.

Color Translation Table

When rendering requires a translation from one depth to another, a
color translation table is used. For example, suppose you are trying
to display an 8-bit color bitmap image on a 2-bit display. Palm OS
must translate the color bitmap to a grayscale bitmap in order to
display it. To do so, it creates the translation table by stepping
through each element of the source color table (the 8-bit bitmap) and
finding the best fit for the RGB value in the destination color table
(which has exactly 4 values). This table is generated once and is
reused for all drawing operations until it is no longer valid.

Palm OS uses one of two algorithms to build the translation table:

• Luminosity fitting if the destination color table is grayscale.

• Shortest distance in the RGB space if the destination color
table is color.

Although shortest distance RGB fitting does not always produce the
best perceptual match, it is fast, and it works well for the available
palettes on Palm OS.
128 Palm OS Programmer’s Companion



User Interface
Color and Grayscale Support
Color Table Management

If you want to change the color table used by the current draw
window, you can do so with the WinPalette  function. If the
current draw window is onscreen, the palette for the display
hardware is also changed. For more information see the
WinPalette  function description in the Palm OS SDK Reference.

If your application needs to know which RGB color corresponds to
which index color in the current palette, it can do so with the
function calls WinRGBToIndex  and WinIndexToRGB . When
calling WinRGBToIndex , an exact match may not be available. That
is, you may be calling WinRGBToIndex  with an RGB value that is
not in the palette and thus does not have an index. If there is no
exact RGB match, the best-fit algorithm currently in place is used to
determine the index value. For WinIndexToRGB , the RGB value
returned is always the exact match. (An error is displayed if the
index is out of range.)

UI Color List
The system builds a UI color list in addition to the system color
table. The UI color list contains the colors used by the various user
interface elements. Each UI color is represented by a symbolic color
constant. See Table 5.16 for a list of colors used.

Each bit depth has its own list of UI colors, allowing for a different
color scheme in monochrome, grayscale, and color modes. This is
important because even with a default monochrome look and feel,
highlighted field text is black-on-yellow in color and white-on-black
in other modes.

To obtain the color list, the system first tries to load it from the
synchronized preferences database using the value
sysResIDPrefUIColorTableBase  plus the current screen
depth. The use of a preference allows for the possibility that
individual users could customize the look using a third party
“personality” or “themes” editor. If the preference is not defined, it
loads the default color table from the system color table resource
using systemDefaultUIColorsBase  plus the current screen
depth.
Palm OS Programmer’s Companion 129



User Interface
Color and Grayscale Support
Using a list allows easy variation of the colors of UI elements to
either personalize the overall color scheme of a given Palm device
or to adjust it within an application. Defining these as color classes
ensures that the user interface elements are consistent with each
other.

Table 5.16 UI objects and colors

UI Object Symbolic Colors Used

Forms UIFormFrame , UIFormFill

Modal dialogs UIDialogFrame , UIDialogFill

Alert dialogs UIAlertFrame , UIAlertFill

Buttons (push
button, repeating
button, check boxes,
and selector triggers)

UIObjectFrame , UIObjectFill ,
UIObjectForeground ,
UIObjectSelectedFill ,
UIObjectSelectedForeground

Fields UIFieldBackground , UIFieldText ,
UIFieldTextLines ,
UIFieldTextHighlightBackground ,
UIFieldTextHighlightForeground

Menus UIMenuFrame , UIMenuFill ,
UIMenuForeground ,
UIMenuSelectedFill ,
UIMenuSelectedForeground

Tables Uses UIFieldBackground  for the
background, other colors controlled by
the object in the table cell.

Lists and popup
triggers

UIObjectFrame , UIObjectFill ,
UIObjectForeground ,
UIObjectSelectedFill ,
UIObjectSelectedForeground
130 Palm OS Programmer’s Companion



User Interface
Insertion Point
Should your application need to change the colors used by the UI
color list, it can do so with UIColorSetTableEntry . If you need
to retrieve a color used, it can do so with
UIColorGetTableEntryIndex  or
UIColorGetTableEntryRGB .

If you change the UI color list, your changes are in effect only while
your application is active. The UI color list is reset as soon as control
switches to another application. When control switches back to your
application, you’ll have to call UIColorSetTableEntry  again.

Insertion Point
The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application doesn’t need to be concerned with the
insertion point; the Palm OS UI manages the insertion point.

Labels Labels on a control and noneditable fields
use UIObjectForeground , and text
written to a form using WinDrawChars
or WinPaintChars  use the current text
setting in the draw state.

Scroll bars UIObjectFill ,
UIObjectForeground ,
UIObjectSelectedFill ,
UIObjectSelectedForeground

Insertion point UIFieldCaret

Front-end processor
(currently only used
on Japanese systems)

UIFieldFepRawText ,
UIFieldFepRawBackground ,
UIFieldFepConvertedText ,
UIFieldFepConvertedBackground ,
UIFieldFepUnderline

Table 5.16 UI objects and colors (continued)

UI Object Symbolic Colors Used
Palm OS Programmer’s Companion 131



User Interface
Text
Text
This section describes how to work with text in the user interface—
whether it’s text the user has entered or text that your application
has created to display on the screen.

NOTE: If you application is going to be localized, you must take
special care when working with text. See the chapter “Localized
Applications” for more information.

Working With Text As Strings
The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like strcpy , strcat , etc.

Applications should use the functions built into the string manager
instead of the standard C functions because doing so makes the
application smaller:

• When your application uses the string manager functions,
the actual code that implements the function is not linked
into your application but is already part of the operating
system.

• When you use the standard C functions, the code for each
function you use is linked into your application and results
in a bigger executable.

In addition, many standard C functions don’t work on the Palm OS
device at all because the OS doesn’t provide all basic system
functions (such as malloc ) and doesn’t support the subroutine calls
used by most standard C functions.

NOTE: If your application is going to be localized, be careful
when using string functions. Where possible, use the functions
described in the chapter “Localized Applications” instead.
132 Palm OS Programmer’s Companion



User Interface
Text
Using the StrVPrintF Function

Like the C vsprintf  function, the StrVPrintF  function is
designed to be called by your own function that takes a variable
number of arguments and passes them to StrVPrintF  for
formatting. This section gives a brief overview of how to use
StrVPrintF . For more details, refer to vsprintf  and the use of
the stdarg.h  macros in a standard C reference book.

When you call StrVPrintF , you must use the special macros from
stdarg.h  to access the optional arguments (those specified after
the fixed arguments) passed to your function. This is necessary,
because when you declare your function that takes an optional
number of arguments, you declare it using an ellipsis at the end of
the argument list:

MyPrintF(CharPtr s, CharPtr formatStr, ...);

The ellipsis indicates that zero or more optional arguments may be
passed to the function following the formatStr  argument. Since
these optional arguments don’t have names, the stdarg.h  macros
must be used to access them before they can be passed to
StrVPrintF .

To use these macros in your function, first declare an args  variable
as type va_list :

va_list args;

Next, initialize the args  variable to point to the optional argument
list by using va_start :

va_start(args, formatStr);

Note that the second argument to the va_start  macro is the last
required argument to your function (last before the optional
arguments begin). Now you can pass the args  variable as the last
parameter to the StrVPrintF  function:

StrVPrintF(text, formatStr, args);

When you are finished, invoke the macro va_end  before returning
from your function:

va_end(args);

Note that the StrPrintF  and StrVPrintF  functions implement
only a subset of the conversion specifications allowed by the ANSI
Palm OS Programmer’s Companion 133



User Interface
Receiving User Input
C function vsprintf . See the StrVPrintF  function reference for
details.

Fonts in Palm OS 3.0 and Later
Palm OS 3.0 and later provides a new font (largeBoldFont ), two
new font manipulation routines (FontSelect  and
FntDefineFont ), and support for the use of custom fonts.

To use the large, bold font, pass the largeBoldFont selector to the
FntSetFont  function. Under Palm OS 3.0 and later, if you try to
draw with a font that isn’t installed, the system uses the standard
font by default. Previous versions of Palm OS can crash if told to use
a nonexistent font.

The FontSelect  function displays a dialog box in which the user
can specify the use of one of the three primary fonts stdFont ,
boldFont , or largeBoldFont . For more information, see the
description of FontSelect  in the Palm OS SDK Reference.

The FntDefineFont  function makes a custom font available to
your application. For more information, see the description of
FntDefineFont  in the Palm OS SDK Reference.

Currently, Palm has not made available any tools or specifications to
convert desktop fonts for use on Palm OS 3.0 or later. If you have an
urgent need for such support, send email to devsupp@palm.com
for updated information.

Receiving User Input
The three main ways that a user interacts with an application are:

• by entering Graffiti

• by pressing a hardware button on the device

• by tapping the pen on a control in a form or dialog

The Palm OS provides three managers that control these three types
of input: The Graffiti Manager, The Key Manager, and The Pen
Manager, respectively.

Most applications do not need to access these managers directly;
instead, applications receive events from these managers and
134 Palm OS Programmer’s Companion



User Interface
Receiving User Input
respond to the events. There are cases, however, where you might
need to interact with one of these managers. This section describes
the three input managers and when you might need to use them. (To
learn how to obtain user input from a UI object, refer to the section
in this chapter that covers that object.)

The Graffiti Manager
The Graffiti manager provides an API to the Palm OS Graffiti
recognizer. The recognizer converts pen strokes into key events,
which are then fed to an application through the event manager.

Most applications never need to call the Graffiti manager directly
because it’s automatically called by the event manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special-purpose applications, such as a Graffiti tutorial, may want
to call the Graffiti manager directly to recognize strokes in other
areas of the screen or to customize the Graffiti behavior.

Using GrfProcessStroke

GrfProcessStroke  is a high-level Graffiti manager call used by
the event manager for converting pen strokes into key events. The
call

• Removes pen points from the pen queue

• Recognizes the stroke

• Puts one or more key events into the key queue

GrfProcessStroke  automatically handles Graffiti ShortCuts and
calls the user interface as appropriate to display shift indicators in
the current window.

An application can call GrfProcessStroke  when it receives a
penUpEvent  from the event manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Using Other High-Level Graffiti Manager Calls

Other high-level calls provided by the Graffiti manager include
routines for
Palm OS Programmer’s Companion 135



User Interface
Receiving User Input
• Getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.)

• Notifying Graffiti when the user selects a different field.
Graffiti needs to be notified when a field change occurs so
that it can cancel out of any partially entered shortcut and
clear its temporary shift state if it’s showing a potentially
accented character.

Special-Purpose Graffiti Manager Calls

The remainder of Graffiti manager API routines are for special-
purpose use. They are basically all the entry points into the Graffiti
recognizer engine and are usually called only by
GrfProcessStroke . These special-purpose uses include calls to
add pen points to the Graffiti recognizer’s stroke buffer, to convert
the stroke buffer into a Graffiti glyph ID, and to map a glyph into a
string of one or more key strokes.

Accessing Graffiti ShortCuts

Other routines provide access to the Graffiti ShortCuts database.
This is a separate database owned and maintained by the Graffiti
manager that contains all of the shortcuts. This database is opened
by the Graffiti manager when it initializes and stays open even after
applications quit.

The only way to modify this database is through the Graffiti
manager API. It provides calls for getting a list of all shortcuts, and
for adding, editing, and removing shortcuts. The ShortCuts screen
of the Preferences application provides a user-interface for
modifying this database.

Note on Auto Shifting

The Palm OS 2.0 and later automatically uses an upper-case letter
under the following conditions:

• Period and space or Return.

• Other sentence terminator (such as ? or !) and space

This functionality requires no changes by the developer, but should
be welcome to the end user.
136 Palm OS Programmer’s Companion



User Interface
Receiving User Input
Note on Graffiti Help

In Palm OS 2.0 and later, applications can pop up Graffiti help by
calling SysGraffitiReferenceDialog  or by putting a virtual
character—graffitiReferenceChr  from Chars.h —on the
queue.

Graffiti help is also available through the system Edit menu. As a
result, any application that includes the system Edit menu allows
users to access Graffiti Help that way.

The Key Manager
The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and
implements auto-repeat of the buttons. Most applications never
need to call the key manager directly except to change the key
repeat rate or to poll the current state of the keys.

The event manager is the main interface to the keys; it returns a
keyDownEvent  to an application whenever a button is pressed.
Normally, applications are notified of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware
buttons can also be queried by applications at any time through the
KeyCurrentState  function call.

The KeyRates  call changes the auto-repeat rate of the hardware
buttons. This might be useful to game applications that want to use
the hardware buttons for control. The current key repeat rates are
stored in the key manager globals and should be restored before the
application exits.

The Pen Manager
The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. The Palm OS platform
device has a built-in digitizer overlaid onto the LCD screen and
extending about an inch below the screen. This digitizer is capable
of sampling accurately to within 0.35 mm (.0138 in) with up to 50
accurate points/second. When the device is in doze mode, an
interrupt is generated when the pen is first brought down on the
Palm OS Programmer’s Companion 137



User Interface
Application Launcher
screen. After a pen down is detected, the system software polls the
pen location periodically (every 20 ms) until the pen is again raised.

Most applications never need to call the pen manager directly
because any pen activity is automatically returned to the application
in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and
scaling the x and y coordinates appropriately.

Application Launcher
The Application Launcher (accessed via the silkscreen
“Applications” button) presents a window or menu from which the
user can open other applications present on the Palm device.
Applications installed on the Palm device (resource databases of
type APPL) appear in the Application Launcher automatically.

NOTE: Versions of Palm OS prior to 3.0 implemented the
Launcher as a popup. The SysAppLauncherDialog  function,
which provides the API to the old popup launcher, is still present
in Palm OS 3.0 for compatibility purposes, but it has not been
updated and, in most cases, should not be used.

The Launcher application can beam applications to other Palm
devices. Only the application itself is beamed; associated storage
databases and preferences are not transmitted. To suppress the
beaming of your application by the Launcher, you can set the
dmHdrAttrCopyPrevention  bit in your database header. (For a
runtime code example, see the “Dr McCoy” sample application.
Note that you can also use compile-time code to suppress beaming.)
138 Palm OS Programmer’s Companion



User Interface
Application Launcher
Normally, the Launcher represents installed applications
graphically as icons that appear in the Launcher window. The
Launcher application also provides a list mode that allows the user
to see more applications at once than are normally visible in its
default viewing mode. You can use the Constructor tool to provide a
small icon for the list mode—you’ll need to create a tAIB  resource
having 1001  as the value of its ID.

The Launcher displays a version string from each application’s
tver resource, ID 1000 . This short string (usually 3 to 6 characters)
is displayed in the “Info” dialog.

Situations in which you need to open the Application Launcher
programmatically are rare, but the system does provide an API for
doing so. To activate the Launcher from within your application,
enqueue a keyDownEvent that contains a launchChr , as shown in
Listing 5.6.

WARNING! Do not use the SysUIAppSwitch  or
SysAppLaunch  functions to open the Application Launcher
application.

Listing 5.6 Opening the Launcher

EventType newEvent;
newEvent.eType = keyDownEvent;
newEvent.data.keyDown.chr = launchChr;
newEvent.data.keyDown.modifiers = commandKeyMask;
EvtAddEventToQueue (&newEvent);

For information on launching other applications programmatically,
see “Launching Applications Programmatically” in the chapter
“Application Startup and Stop.”
Palm OS Programmer’s Companion 139



User Interface
Summary of User Interface API
Summary of User Interface API
Progress Manager Functions

PrgHandleEvent
PrgStopDialog
PrgUserCancel

PrgStartDialog
PrgUpdateDialog

Form Functions

Initialization

FrmInitForm

Event Handling

FrmSetEventHandler
FrmHandleEvent

FrmDispatchEvent

Displaying a Form

FrmGotoForm
FrmDrawForm
FrmSetActiveForm

FrmPopupForm
FrmNewForm

Displaying a Modal Dialog

FrmCustomAlert
FrmCustomResponseAlert
FrmAlert
FrmDoDialog

FrmHelp
FrmSaveActiveState
FrmRestoreActiveState
FrmNewGsi

Updating the Display

FrmUpdateForm
FrmShowObject
FrmRemoveObject

FrmReturnToForm
FrmHideObject
FrmUpdateScrollers

Form Attributes

FrmVisible FrmSaveAllForms
140 Palm OS Programmer’s Companion



User Interface
Summary of User Interface API
Accessing a Form Programmatically

FrmGetActiveForm
FrmGetFirstForm
FrmGetFormPtr
FrmValidatePtr

FrmGetActiveFormID
FrmGetFormId
FrmGetWindowHandle

Accessing Objects Within a Form

FrmGetFocus
FrmGetObjectId
FrmGetObjectType
FrmGetObjectPtr

FrmSetFocus
FrmGetObjectIndex
FrmGetObjectPosition
FrmGetNumberOfObjects

Title and Menu

FrmCopyTitle
FrmPointInTitle
FrmSetMenu

FrmGetTitle
FrmSetTitle

Labels

FrmCopyLabel
FrmGetLabel

FrmSetCategoryLabel
FrmNewLabel

Controls

FrmGetControlValue
FrmGetControlGroupSelection

FrmSetControlValue
FrmSetControlGroupSelection

Gadgets

FrmGetGadgetData
FrmNewGadget

FrmSetGadgetData
FrmSetGadgetHandler

Bitmaps

FrmNewBitmap

Coordinates and Boundaries

FrmGetObjectBounds
FrmSetObjectPosition

FrmSetObjectBounds
FrmGetFormBounds

Form Functions
Palm OS Programmer’s Companion 141



User Interface
Summary of User Interface API
Removing a Form From the Display

FrmCloseAllForms FrmEraseForm

Releasing a Form’s Memory

FrmDeleteForm

Window Functions

Initialization

WinCreateWindow

Making a Window Active

WinSetActiveWindow WinSetDrawWindow

Accessing a Window Programmatically

WinGetActiveWindow
WinGetDisplayWindow
WinValidateHandle

WinGetDrawWindow
WinGetFirstWindow

Offscreen Windows

WinRestoreBits
WinCreateOffscreenWindow

WinSaveBits
WinCreateBitmapWindow

Displaying Characters

WinDrawChar
WinInvertChars
WinDrawTruncChars
WinPaintChar

WinDrawChars
WinDrawInvertedChars
WinEraseChars
WinPaintChars

Bitmaps

WinDrawBitmap
WinPaintBitmap

WinGetBitmap

Form Functions
142 Palm OS Programmer’s Companion



User Interface
Summary of User Interface API
Lines

WinDrawLine
WinFillLine
WinEraseLine
WinPaintLines

WinDrawGrayLine
WinInvertLine
WinPaintLine

Rectangles

WinDrawRectangle
WinInvertRectangle
WinFillRectangle
WinEraseRectangle
WinDrawGrayRectangleFrame
WinPaintRectangle

WinCopyRectangle
WinDrawRectangleFrame
WinInvertRectangleFrame
WinScrollRectangle
WinEraseRectangleFrame
WinPaintRectangleFrame

Pixels

WinDrawPixel
WinErasePixel
WinGetPixel

WinInvertPixel
WinPaintPixel
WinPaintPixels

Clipping Rectangle

WinGetClip
WinResetClip

WinSetClip
WinClipRectangle

Setting the Drawing State

WinPopDrawState
WinModal
WinSetPattern
WinGetPatternType
WinSetBackColor
WinSetPatternType

WinPushDrawState
WinGetPattern
WinSetUnderlineMode
WinSetDrawMode
WinSetForeColor
WinSetTextColor

Coordinates and Boundaries

WinDisplayToWindowPt
WinGetDisplayExtent
WinSetWindowBounds
WinGetFramesRectangle

WinWindowToDisplayPt
WinGetWindowExtent
WinGetWindowBounds
WinGetWindowFrameRect

Window Functions
Palm OS Programmer’s Companion 143



User Interface
Summary of User Interface API
Working with the Screen

WinScreenMode
WinScreenUnlock

WinScreenLock

Removing a Window From the Display

WinEraseWindow

Releasing a Window’s Memory

WinDeleteWindow

Working with Colors

WinIndexToRGB
WinRGBToIndex

WinPalette

Control Functions

Displaying a Control

CtlShowControl
CtlSetUsable
CtlNewGraphicControl

CtlDrawControl
CtlNewControl
CtlNewSliderControl

Control’s Value

CtlGetValue
CtlGetSliderValues

CtlSetValue

Label

CtlSetLabel CtlGetLabel

Enabling/Disabling

CtlSetEnabled
CtlHideControl

CtlEnabled
CtlEraseControl

Event Handling

CtlHandleEvent

Window Functions
144 Palm OS Programmer’s Companion



User Interface
Summary of User Interface API
Setting up controls

CtlGetSliderValues
CtlSetGraphics

CtlSetSliderValues

Debugging

CtlHitControl CtlValidatePointer

Field Functions

Obtaining User Input

FldGetTextPtr
FldSetDirty
FldGetSelection

FldGetTextHandle
FldDirty

Updating the Display

FldDrawField
FldSetSelection
FldRecalculateField

FldMakeFullyVisible
FldSetBounds

Displaying Text

FldSetTextPtr

Editing Text

FldSetText
FldInsert
FldEraseField

FldSetTextHandle
FldDelete

Cut/Copy/Paste

FldCopy
FldPaste

FldCut
FldUndo

Control Functions
Palm OS Programmer’s Companion 145



Scrolling

FldScrollField
FldSetScrollPosition
FldGetVisibleLines
FldGetNumberOfBlankLines

FldScrollable
FldGetScrollPosition
FldGetScrollValues

Field Attributes

FldGetAttributes
FldGetFont
FldGetMaxChars

FldSetAttributes
FldSetFont
FldSetMaxChars
FldGetBounds

Text Attributes

FldCalcFieldHeight
FldGetTextAllocatedSize
FldSetTextAllocatedSize

FldGetTextHeight
FldGetTextLength
FldWordWrap

Working With the Insertion Point

FldGetInsPtPosition
FldSetInsertionPoint

FldSetInsPtPosition

Releasing Memory

FldCompactText FldFreeMemory

Event Handling

FldHandleEvent
FldSendHeightChangeNotification

FldSendChangeNotification

Dynamic UI

FldNewField

Field Functions



User Interface
Summary of User Interface API
Menu Functions

MenuDispose
MenuEraseStatus
MenuHandleEvent
MenuSetActiveMenu
MenuAddItem
MenuCmdBarDisplay
MenuHideItem

MenuDrawMenu
MenuInit
MenuGetActiveMenu
MenuSetActiveMenuRscID
MenuCmdBarAddButton
MenuCmdBarGetButtonData
MenuShowItem

Table Functions

Drawing Tables

TblDrawTable
TblSetLoadDataProcedure

TblSetCustomDrawProcedure

Updating the Display

TblRedrawTable
TblReleaseFocus
TblRemoveRow
TblMarkTableInvalid
TblUnhighlightSelection

TblGrabFocus
TblUnhighlightSelection
TblMarkRowInvalid
TblSelectItem

Retrieving Data

TblGetItemPtr
TblFindRowData
TblGetSelection
TblSetSaveDataProcedure

TblGetRowData
TblGetItemInt
TblGetCurrentField

Displaying Data

TblSetItemInt
TblSetItemPtr
TblSetRowData

TblSetItemStyle
TblSetRowID

Retrieving a Row

TblFindRowID TblGetRowID
Palm OS Programmer’s Companion 147



User Interface
Summary of User Interface API
Table Information

TblEditing
TblGetItemBounds
TblGetNumberOfRows
TblHasScrollBar

TblGetBounds
TblGetLastUsableRow
TblSetBounds

Row Information

TblGetRowHeight
TblRowSelectable
TblRowUsable
TblSetRowStaticHeight

TblSetRowHeight
TblSetRowSelectable
TblSetRowUsable
TblRowInvalid

Masked Records

TblRowMasked
TblSetColumnMasked

TblSetRowMasked

Column Information

TblGetColumnSpacing
TblGetColumnWidth
TblSetColumnUsable

TblSetColumnSpacing
TblSetColumnWidth
TblSetColumnEditIndicator

Removing a Table From the Display

TblEraseTable

Event Handling

TblHandleEvent

Private Record Functions

SecSelectViewStatus SecVerifyPW

Table Functions
148 Palm OS Programmer’s Companion



User Interface
Summary of User Interface API
List Functions

Displaying a List

LstDrawList
LstPopupList

LstSetDrawFunction
LstNewList

Updating the Display

LstMakeItemVisible
LstSetListChoices
LstSetSelection
LstScrollList

LstSetHeight
LstSetTopItem
LstSetPosition

List Data and Attributes

LstGetNumberOfItems
LstGetSelection

LstGetVisibleItems
LstGetSelectionText

Removing a List From the Display

LstEraseList

Event Handling

LstHandleEvent

Category Functions

CategoryCreateList
CategoryEdit
CategoryFind
CategoryFreeList
CategoryGetName
CategoryGetNext

CategoryInitialize
CategorySelect
CategorySetName
CategorySetTriggerLabel
CategorySelect
CategoryTruncateName
Palm OS Programmer’s Companion 149



User Interface
Summary of User Interface API
Bitmap Functions

BmpBitsSize
BmpColortableSize
BmpCompress
BmpCreate
BmpDelete

BmpGetBits
BmpGetColortable
BmpSize
ColorTableEntries

Scroll Bar Functions

SclSetScrollBar
SclHandleEvent

SclGetScrollBar
SclDrawScrollBar

UI Color List Functions

UIColorGetTableEntryIndex
UIColorSetTableEntry

 UIColorGetTableEntryRGB

UI Controls

UIBrightnessAdjust
UIPickColor

UIContrastAdjust

Insertion Point Functions

InsPtEnable
InsPtGetHeight
InsPtGetLocation

InsPtEnabled
InsPtSetHeight
InsPtSetLocation

String Manager Functions

Length of a String

StrLen
150 Palm OS Programmer’s Companion



User Interface
Summary of User Interface API
Comparing Strings

StrCompare
StrCaselessCompare

StrNCompare
StrNCaselessCompare

Changing Strings

StrPrintF
StrCat
StrCopy
StrToLower

StrVPrintF
StrNCat
StrNCopy

Searching Strings

StrStr StrChr

Converting

StrAToI
StrIToH

StrIToA

Localized Numbers

StrDelocalizeNumber StrLocalizeNumber

Font Functions

Changing the Font

FontSelect FntSetFont

Accessing the Font Programmatically

FntGetFont FntGetFontPtr

Wrapping Text

FntWordWrap FntWordWrapReverseNLines

String Width

FntCharsInWidth
FntLineWidth

FntCharsWidth
FntWidthToOffset

String Manager Functions
Palm OS Programmer’s Companion 151



User Interface
Summary of User Interface API
Character Width

FntAverageCharWidth FntCharWidth

Height

FntCharHeight
FntBaseLine

FntLineHeight
FntDescenderHeight

Scrolling

FntGetScrollValues

Creating a Font

FntDefineFont

Graffiti Manager Functions

Translate a Stroke into Keyboard Events

GrfProcessStroke

Shift State

GrfInitState
GrfCleanState
GrfFindBranch

GrfGetState
GrfSetState

Point Buffer

GrfGetNumPoints
GrfAddPoint
GrfFlushPoints
GrfMatch

GrfGetPoint
GrfFilterPoints
GrfGetGlyphMapping
GrfMatchGlyph

Working with Macros

GrfGetAndExpandMacro
GrfDeleteMacro
GrfGetMacroName

GrfAddMacro
GrfGetMacro

Font Functions
152 Palm OS Programmer’s Companion



User Interface
Summary of User Interface API
Key Manager Functions

KeyCurrentState
KeySetMask

KeyRates

Pen Manager Functions

PenCalibrate PenResetCalibration
Palm OS Programmer’s Companion 153





6
Memory
This chapter helps you understand memory use on Palm OS®.

• Introduction to Palm OS Memory Use provides information
about Palm OS hardware relevant to memory management.

• Memory Architecture discusses in detail how memory is
structured on Palm OS. It also examines the structure of the
basic building blocks of Palm OS memory: heaps, chunks,
and records.

• The Memory Manager discusses how to use the Palm OS
memory manager in your applications. The memory
manager maintains the location and size of each memory
chunk in nonvolatile storage, volatile storage, and ROM. It
provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

Introduction to Palm OS Memory Use
The Palm OS system software supports applications on low-cost,
low-power, handheld devices. Given these constraints, Palm OS is
efficient in its use of both memory and processing resources. This
section presents two aspects of Palm OS devices that contribute to
this efficiency: Hardware Architecture and PC Connectivity.

Hardware Architecture
The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola® 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512 KB of ROM. Subsequent Palm OS devices provide
additional RAM and ROM in varying amounts.

The ROM and RAM for each Palm OS device resides on a memory
module known as a card. Each memory card can contain ROM,
Palm OS Programmer’s Companion 155



Memory
Introduction to Palm OS Memory Use
RAM, or both. There is no RAM or ROM storage on the
motherboard of the device.

Though all previous and current Palm OS devices hold one card in a
user-accessible hardware slot, it is unwise to assume that any Palm
OS device has a memory module that can be removed physically. A
“card” is simply a logical construct used by the operating system—
Palm OS devices can have one card, multiple cards, or no cards. For
example, the Simulator provided by the Palm OS SDK on Macintosh
can simulate a device that has two cards.

The ROM and RAM on each card is divided into one or more heaps
of 64K (in the current implementation) or less. All the RAM-based
heaps on a memory card are treated as the RAM store, and all the
ROM-based heaps are treated as the ROM store. The heaps for a
store do not have to be adjacent to each other in address space—
they can be scattered throughout the memory space on the card—
but they must all reside on the same card.

The main suite of applications provided with each Palm OS device
is built into ROM. This design permits the user to replace the
operating system and the entire applications suite simply by
installing a single replacement module. Additional or replacement
applications and system extensions can be loaded into RAM, but
doing so is not always practical in this RAM-constrained
environment.

PC Connectivity
PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one and
resynchronizing with the PC. The format of the user’s data in
storage RAM can change with a new version of the ROM; the
connectivity software on the PC is responsible for translating the
data into the correct format when downloading it onto a device with
a new ROM.
156 Palm OS Programmer’s Companion



Memory
Memory Architecture
Memory Architecture

IMPORTANT: This section describes the current (3.X)
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

The Palm OS system software is designed around a 32-bit
architecture. The system uses 32-bit addresses, and its basic data
types are 8, 16, and 32 bits long.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model. Although a
large memory space is available, Palm OS was designed to work
efficiently with small amounts of RAM. For example, the first
commercial Palm OS device has less than 1 MB of memory, or .025%
of this address space.

The Motorola 68328 processor’s 32-bit registers and 32 internal
address lines support a 32-bit execution model as well, although the
external data bus is only 16 bits wide. This design reduces cost
without impacting the software model. The processor’s bus
controller automatically breaks down 32-bit reads and writes into
multiple 16-bit reads and writes externally.

Each memory card in the Palm OS device has 256 MB of address
space reserved for it. Memory card 0 starts at address $1000000,
memory card 1 starts at address $2000000, and so on.

The Palm OS divides the total available RAM store into two logical
areas: dynamic RAM and storage RAM. Dynamic RAM is used as
working space for temporary allocations, and is analogous to the
RAM installed in a typical desktop system. The remainder of the
available RAM on the card is designated as storage RAM and is
analogous to disk storage on a typical desktop system.

Because power is always applied to the memory system, both areas
of RAM preserve their contents when the device is turned “off” (i.e.,
is in low-power sleep mode.) See “Palm OS Power Modes” in the
Palm OS Programmer’s Companion 157



Memory
Memory Architecture
chapter “Palm System Features” in this book. All of storage memory
is preserved even when the device is reset explicitly. As part of the
boot sequence, the system software reinitializes the dynamic area,
and leaves the storage area intact.

The entire dynamic area of RAM is used to implement a single heap
that provides memory for dynamic allocations. From this dynamic
heap, the system provides memory for dynamic data such as global
variables, system dynamic allocations (TCP/IP, IrDA, and so on, as
applicable), application stacks, temporary memory allocations, and
application dynamic allocations (such as those performed when the
application calls the MemHandleNew function).

The entire amount of RAM reserved for the dynamic heap is always
dedicated to this use, regardless of whether it is actually used for
allocations. The size of the dynamic area of RAM on a particular
device varies according to the OS version running, the amount of
physical RAM available, and the requirements of pre-installed
software such as the TCP/IP stack or IrDA stack. Table 6.1 provides
more information about the dynamic heap space that currently
available combinations of OS and hardware provide.

Table 6.1 Dynamic Heap Space

RAM Usage OS 3.5
≤ 4 MB
TCP/IP &
IrDA

OS 3.5
≤ 2 MB
TCP/IP &
IrDA

OS 3.0 > 3.3
> 1 MB
TCP/IP &
IrDA
(Palm III™)

OS 2.0
1 MB
TCP/IP only
(Professional)

OS 2.0/1.0
512 KB
no TCP/IP
or IrDA
(Personal)

Total dynamic area 256 KB 128 KB 96 KB 64 KB 32 KB

System Globals
(screen buffer, UI
globals, database
references, etc.)

40 KB
(OS)

40 KB
(OS)

~2.5 KB ~2.5 KB ~2.5 KB

TCP/IP stack 32 KB 32 KB 32 KB 32 KB 0 KB

System dynamic
allocation
(IrDA, “Find”
window, temporary
allocations)

variable variable variable
amount

~15 KB
(no IrDA in
this OS)

~15 KB
158 Palm OS Programmer’s Companion



Memory
Memory Architecture
The remaining portion of RAM not dedicated to the dynamic heap
is configured as one or more storage heaps used to hold nonvolatile
user data such as appointments, to do lists, memos, address lists,
and so on. An application accesses a storage heap by calling the
database manager or resource manager, according to whether it
needs to manipulate user data or resources.

NOTE: Starting with Palm OS 3.5, the dynamic heap is sized
based on the amount of memory available to the system.

The size and number of storage heaps available on a particular
device varies according to the OS version that is running; the
amount of physical RAM that is available; and the storage
requirements of end-user application software such as the Address
List, Date Book, or third-party applications.

Versions 1.0 and 2.0 of Palm OS subdivide storage RAM into
multiple storage heaps of 64 KB each. Palm OS 3.X configures all
storage RAM on a card as a single storage heap. Under all versions
of Palm OS, system overhead limits the maximum usable data
storage available in a single chunk to slightly less than 64 KB.

Application stack
(call stack and local
vars)

N/A (see
note)

N/A (see
note)

4 KB
(default)

2.5 KB 2.5 KB

Remaining dynamic
space
(dynamic allocations,
application global
variables, and static
variables)

184 KB 56 KB ≤ 36 KB ≤ 12 KB ≤ 12 KB

Table 6.1 Dynamic Heap Space (continued)

RAM Usage OS 3.5
≤ 4 MB
TCP/IP &
IrDA

OS 3.5
≤ 2 MB
TCP/IP &
IrDA

OS 3.0 > 3.3
> 1 MB
TCP/IP &
IrDA
(Palm III™)

OS 2.0
1 MB
TCP/IP only
(Professional)

OS 2.0/1.0
512 KB
no TCP/IP
or IrDA
(Personal)
Palm OS Programmer’s Companion 159



Memory
Memory Architecture
In the Palm OS environment, all data are stored in memory manager
chunks. A chunk is an area of contiguous memory between 1 byte
and slightly less than 64 KB in size that has been allocated by the
Palm OS memory manager. (Because system overhead requirements
may vary, an exact figure for the maximum amount of usable data
storage for all chunks cannot be specified.) Currently, all Palm OS
implementations limit the maximum size of any chunk to slightly
less than 64 KB; however, the API does not have this constraint, and
it may be relaxed in the future.

Each chunk resides in a heap. Some heaps are ROM-based and
contain only nonmovable chunks; some are RAM-based and may
contain movable or nonmovable chunks. A RAM-based heap may
be a dynamic heap or a storage heap. The Palm OS memory
manager allocates memory in the dynamic heap (for dynamic
allocations, stacks, global variables, and so on). The Palm OS data
manager allocates memory in one or more storage heaps (for
nonvolatile user data).

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a record in a database
implemented by the Palm OS data manager. In the Palm OS
environment, a database is simply a list of memory chunks and
associated database header information. Normally, the items in a
database share some logical association; for example, a database
may hold a collection of all address book entries, all datebook
entries, and so on.

A database is analogous to a file in a desktop system. Just as a
traditional file system can create, delete, open, and close files, Palm
OS applications can create, delete, open, and close databases as
necessary. There is no restriction on where the records for a
particular database reside as long as they are all on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory
manager design. Each record in a database is in fact a memory
manager chunk. The data manager can use memory manager calls
to allocate, delete, and resize database records. All heaps except for
the dynamic heap are nonvolatile, so database records can be stored
in any heap except the dynamic heap. Because records can be stored
160 Palm OS Programmer’s Companion



Memory
Memory Architecture
anywhere on the memory card, databases can be distributed over
multiple discontiguous areas of physical RAM, but all records
belonging to a particular database must reside on the same card.

To understand how database records are manipulated, it helps to
know something about the way the memory manager allocates and
tracks memory chunks, as the next section describes.

Heap Overview

IMPORTANT: This section describes the current (3.X)
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

Recall that a heap is a contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When
applications work with memory (allocate, resize, lock, etc.) they
usually work with chunks of memory. An application can specify
whether to allocate a new chunk of memory in the storage heap or
the dynamic heap. The memory manager manages each heap
independently and rearranges chunks as necessary to defragment
heaps and merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that the memory manager
uses to identify a heap within the Palm OS address space. Heap IDs
start at 0 and increment sequentially by units of 1. Values are
assigned beginning with the RAM heaps on card 0, continuing with
the ROM heaps on card 0, and then continuing through RAM and
ROM heaps on subsequent cards. The sequence of heap IDs is
continuous; that is, no values in the sequence are skipped.

The first heap (heap 0) on card 0 is the dynamic heap. This heap is
reinitialized every time the Palm OS device is reset. When an
application quits, the system frees any chunks allocated by that
application in the dynamic heap. All other heaps are nonvolatile
storage heaps that retain their contents through soft reset cycles.
Palm OS Programmer’s Companion 161



Memory
Memory Architecture
When a Palm OS device is presented with multiple dynamic heaps,
the first heap (heap 0) on card 0 is the active dynamic heap. All
other potential dynamic heaps are ignored. For example, it is
possible that a future Palm OS device supporting multiple cards
might be presented with two cards, each having its own dynamic
heap; if so, only the dynamic heap residing on card 0 would be
active—the system would not treat any heaps on other cards as
dynamic heaps, nor would heap IDs be assigned to these heaps.
Subsequent storage heaps would be assigned IDs in sequential
order, as always beginning with RAM heaps, followed by ROM
heaps.

NOTE: In Palm OS 3.5, the dynamic heap is sized based on the
amount of memory available to the system.

Overview of Memory Chunk Structure

Memory chunks can be movable or nonmovable. Applications need
to store data in movable chunks whenever feasible, thereby
enabling the memory manager to move chunks as necessary to
create contiguous free space in memory for allocation requests.

When the memory manager allocates a nonmovable chunk it
returns a pointer to that chunk. The pointer is simply that chunk’s
address in memory. Because the chunk cannot move, its pointer
remains valid for the chunk’s lifetime; thus, the pointer can be
passed “as is” to the caller that requested the allocation.

When the memory manager allocates a moveable chunk, it
generates a pointer to that chunk, just as it did for the nonmovable
chunk, but it does not return the pointer to the caller. Instead, it
stores the pointer to the chunk, called the master chunk pointer, in a
master pointer table that is used to track all of the moveable chunks
in the heap, and returns a reference to the master chunk pointer.
This reference to the master chunk pointer is known as a handle. It
is this handle that the memory manager returns to the caller that
requested the allocation of a moveable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the memory manager to move chunks
around in the heap without invalidating any chunk references that
162 Palm OS Programmer’s Companion



Memory
Memory Architecture
an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk
needs to be updated by the memory manager when it moves a
chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should unlock the handle immediately to keep heap
fragmentation to a minimum.

Note that any handle is good only until the system is reset. When
the system resets, it reinitializes all dynamic memory areas and
relaunches applications. Therefore, you must not store a handle in a
database record or a resource.

Each chunk on a memory card is actually located by means of a
card–relative reference called a local ID. A local ID is a reference to a
data chunk that the system computes from the base address of the
card. The local ID of a nonmovable chunk is simply the offset of the
chunk from the base address of the card. The local ID of a movable
chunk is the offset of the master pointer to the chunk from the base
address of the card, but with the low-order bit set. Since chunks are
always aligned on word boundaries, only local IDs of movable
chunks have the low-order bit set. Once the base address of the card
is determined at runtime, a local ID can be converted quickly to a
pointer or handle.

For example, when an application needs the handle to a particular
data record, it calls the data manager to retrieve the record by index
from the appropriate database. The data manager fetches the local
ID of the record out of the database header and uses it to compute
the handle to the record. The handle to the record is never actually
stored in the database itself.

Although currently available Palm OS devices do not provide
hardware support for multiple cards, the use of local IDs provides
support in software for future devices that may allow the user to
remove or insert memory cards. If the user moves a memory card to
a slot having a different base address, the handle to a memory
chunk on that card is likely to change, but the local ID associated
with that chunk does not change.
Palm OS Programmer’s Companion 163



Memory
The Memory Manager
The Memory Manager
The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and
unlocking chunks, and compacting heaps when they become
fragmented. Because of the limited RAM and processor resources of
the Palm OS device, the memory manager is efficient in its use of
processing power and memory.

This section provides background information on the organization
of memory in Palm OS and provides an overview of the memory
manager API, discussing these topics:

• Memory Manager Structures

• Using the Memory Manager

Memory Manager Structures
This section discusses the different structures the memory manager
uses:

• Heap Structures

• Chunk Structures

• Local ID Structures

Heap Structures

IMPORTANT: Expect the heap structure to change in the future.
Use the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

• Heap header. The heap header is located at the beginning of
the heap. It holds the size of the heap and contains flags for
the heap that provide certain information to the memory
manager; for example, whether the heap is ROM-based.
164 Palm OS Programmer’s Companion



Memory
The Memory Manager
• Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

– When the memory manager moves a chunk to compact
the heap, the pointer for that chunk in the master pointer
table is updated to the chunk’s new location. The handles
an application uses to track movable chunks reference the
address of the master pointer to the chunk, not the chunk
itself. In this way, handles remain valid even after a
chunk is moved. The OS compacts the heap automatically
when available contiguous space is not sufficient to fulfill
an allocation request.

– If the master pointer table becomes full, another is
allocated and its offset is stored in the
nextMstrPtrTable field of the previous master pointer
table. Any number of master pointer tables can be linked
in this way. Because additional master pointer chunks are
nonmovable, they are allocated at the end of the heap,
according to the guidelines described in the “Heap
chunks” section following immediately.

• Heap chunks. Following the master pointer table are the
actual chunks in the heap.

– Movable chunks are generally allocated at the beginning
of the heap, and nonmovable chunks at the end of the
heap.

– Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the
memory manager.

– Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the
size of the chunk. All free and nonmovable chunks can be
found in this manner by checking the flags in each chunk
header.

Because heaps can be ROM-based, there is no information in
the header that must be changed when using a heap. Also,
ROM-based heaps contain only nonmovable chunks and
have a master pointer table with 0 entries.
Palm OS Programmer’s Companion 165



Memory
The Memory Manager
Chunk Structures

IMPORTANT: Expect the chunk structure to change in the
future. Use the API to work with chunks.

Each chunk begins with an 8-byte header followed by that chunk’s
data. The chunk header consists of a Flags:size adjustment byte,
3 bytes of size information, a lock:owner  byte, and 3 bytes of
hOffset  information.

• Flags:sizeAdj  byte.This byte contains flags in the high
nibble and a size adjustment in the low nibble.

– The flags nibble has 1 bit currently defined, which is set
for free chunks.

– The size adjustment nibble can be used to calculate the
requested size of the chunk, given the actual size. The
requested size is computed by taking the size as stored in
the chunk header and subtracting the size of the header
and the size adjustment field. The actual size of a chunk is
always a multiple of two so that chunks always start on a
word boundary.

• size field (3 bytes). This three-byte value describes the size
of the chunk, which is larger than the size requested by the
application and includes the size of the chunk header itself.
The maximum data size for a chunk is slightly less than 64
KB.

• Lock:owner  byte. Following the size information is a byte
that holds the lock count in the high nibble and the owner ID
in the low nibble.

– The lock count is incremented every time a chunk is
locked and decremented every time a chunk is unlocked.
A movable chunk can be locked a maximum of 14 times
before being unlocked. Nonmovable chunks always have
15 in the lock field.

– The owner ID determines the owner of a memory chunk
and is set by the memory manager when allocating a new
chunk. Owner ID information is useful for debugging and
for garbage collection when an application terminates
abnormally.
166 Palm OS Programmer’s Companion



Memory
The Memory Manager
• hOffset  field (3 bytes). The last three bytes in the chunk
header is the distance from the master pointer for the chunk
to the chunk’s header, divided by two. Note that this offset
could be a negative value if the master pointer table is at a
higher address than the chunk itself. For nonmovable chunks
that do not need an entry in the master pointer table, this
field is 0.

Local ID Structures

IMPORTANT: Expect the local ID structure to change in the
future. Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through local IDs. A local ID is card
relative and is always valid no matter what memory slot the card
resides in. A local ID can be easily converted to a pointer or the
handle to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The MemLocalIDToGlobal  function converts a local ID and card
number (either 0 or 1) to a pointer or handle. It looks at the card
number and adds the appropriate card base address to convert the
local ID to a pointer or handle for that card.

Using the Memory Manager
Use the memory manager API to allocate memory in the dynamic
heap (for dynamic allocations, stacks, global variables, and so on)
and use the data manager API to allocate memory in one or more
storage heaps (for user data). The data manager calls the memory
manager as appropriate to perform low-level allocations. (See The
Data Manager for more information.)

Overview of the Memory Manager API

To allocate a movable chunk, call MemHandleNew and pass the
desired chunk size. Before you can read or write data to this chunk,
Palm OS Programmer’s Companion 167



Memory
The Memory Manager
you must call MemHandleLock  to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
(Recall that unmovable chunks hold the value 15 in the lock field.)
MemHandleUnlock  reverses the effect of MemHandleLock —it
decrements the value of the lock field by 1. When the lock count is
reduced to 0, the chunk is free to be moved by the memory manager.

When an application allocates memory in the dynamic heap, the
memory manager uses an owner ID to associate that chunk with the
application. The system further distinguishes chunks belonging to
the currently active allocation by setting a special bit in the owner
ID information. When the application quits, all chunks in the
dynamic heap having this bit set are freed automatically.

If the system needs to allocate a chunk that is not disposed of when
an application quits, it changes the chunk’s owner ID to 0 by calling
the system functions MemHandleSetOwner  or MemPtrSetOwner .
These functions are not generally used by applications, except in
special circumstances. For example, when the current application is
passing a parameter block to a new application that it is launching,
the owner of the block must be set to the system; otherwise, when
the current application exits, the system deletes the block when it
frees all memory allocated by the current application.

To determine the size of a movable chunk, pass its handle to
MemHandleSize . To resize it, call MemHandleResize . You
generally cannot increase the size of a chunk if it’s locked unless
there happens to be free space in the heap immediately following
the chunk. If the chunk is unlocked, the memory manager is
allowed to move it to another area of the heap to increase its
size.When you no longer need the chunk, call MemHandleFree ,
which releases the chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPtrRecoverHandle . In fact, all of the
MemPtrXxx calls, including MemPtrSize , also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MemPtrNew and pass the
desired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.
168 Palm OS Programmer’s Companion



Memory
The Memory Manager
NOTE: You cannot allocate a zero-size chunk.

To determine the size of a nonmovable chunk, call MemPtrSize.
To resize it, call MemPtrResize . You generally can’t increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MemPtrFree , which releases the chunk even if it’s
locked.

Use the memory manager utility routines MemMove and MemSet to
move memory from one place to another or to fill memory with a
specific value.

In most situations, the proper way to free memory is by calling one
of the MemPtrFree  or MemHandleFree  functions.

NOTE: For important cautions and practical advice regarding
the proper use of memory on Palm OS devices, be sure to read
“Writing Robust Code” in the chapter “Good Design Practices” in
this book.

Storage Heap Sizes and Memory Management Schemes

In Palm OS version 1.0, individual storage heaps were limited to a
maximum size of 64 KB each and the memory manager moved
objects automatically among multiple storage heaps to prevent any
of them from becoming too full. This strategy tended to decrease the
availability of contiguous space for large objects. The version 2.0
memory manager abandoned this approach, increasing the
availability of contiguous heap space; however, it still limited the
maximum size of individual heaps to 64 KB each. Palm OS version
3.X removes the 64 KB maximum size restriction on individual
heaps and creates just two heaps: one 96K dynamic heap and one
storage heap that is the size of all remaining RAM on the card.
Palm OS Programmer’s Companion 169



Memory
The Memory Manager
NOTE: Starting with PalmOS 3.5, the dynamic heap is sized
based on the amount of memory available to the system. The size
which will be used is as follows:

Optimizing Memory Manager Performance
Because Palm OS applications must perform well in a RAM-
constrained environment, proper code segmentation is critical to
achieving optimum performance.

If your application segments are too large, your application may not
perform well (or to run at all) when large contiguous blocks of
memory are not available. Conversely, if your application segments
are too small, performance may be hindered by the overhead
required to find and load resources too frequently.

Unfortunately, it impossible to specify a single size for memory
chunks that will perform optimally for all applications.You will
need to experiment with segmenting your code in different ways
while measuring your application’s performance in order to
discover the size and arrangement of resource chunks that will
optimize your particular application’s responsiveness and overall
performance. The Metrowerks CodeWarrior Debugger, Palm OS
Debugger, and the Simulator provide tools for examining the
internal structure of heaps, viewing the amount of free space
available, manipulating blocks, and so on.

Device RAM size Heap size

< 2 mb of ram 64 k

>= 2 mb 128 k

>= 4 mb 256 k
170 Palm OS Programmer’s Companion



Memory
Summary of Memory Management
Summary of Memory Management
Memory Manager Functions

Allocating and Freeing Memory

MemHandleNew
MemHandleLock
MemLocalIDToLockedPtr
MemHandleFree

MemPtrNew
MemHandleUnlock
MemPtrUnlock
MemPtrFree

Resizing Chunks

MemHandleResize
MemPtrResize
MemHeapFreeBytes

MemHandleSize
MemPtrSize
MemHeapSize

Working With Memory

MemMove
MemCmp

MemSet
MemHeapCompact

Converting Pointers

MemPtrRecoverHandle
MemLocalIDKind
MemPtrToLocalID

MemHandleToLocalID
MemLocalIDToGlobal
MemLocalIDToPtr

Chunk Information

MemHandleCardNo
MemHandleHeapID
MemPtrCardNo
MemPtrSetOwner

MemHandleDataStorage
MemHandleSetOwner
MemPtrDataStorage

Heap Information

MemPtrHeapID
MemHeapDynamic
MemHeapFlags

MemHeapID
MemHeapCheck
Palm OS Programmer’s Companion 171



Memory
Summary of Memory Management
Card Information

MemCardInfo
MemNumHeaps
MemStoreInfo

MemNumCards
MemNumRAMHeaps

Debugging

MemDebugMode
MemSetDebugMode

MemHeapScramble

Memory Manager Functions
172 Palm OS Programmer’s Companion



7
Files and Databases
This chapter describes how to work with databases using Palm OS®

managers.

• The Data Manager manages user data, which is stored in
databases for convenient access.

• The Resource Manager can be used by applications to
conveniently retrieve and save chunks of data. It’s similar to
the data manager, but has the added capability of tagging
each chunk with a unique resource type and ID. These
tagged data chunks, called resources, are stored in resource
databases. Resources are typically used to store the
application’s user interface elements, such as images, fonts,
or dialog layouts.

• File Streaming Application Program Interface can be used by
applications to handle large blocks of data.

The Data Manager
A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using and/or updating the information
in the memory buffer, and then writes the updated memory buffer
back to disk. Because Palm OS devices have limited amounts of
dynamic RAM and use nonvolatile RAM instead of disk storage, a
traditional file system is not optimal for storing and retrieving Palm
OS user data.

Palm OS accesses and updates all information in place. This works
well because it reduces dynamic memory requirements and
eliminates the overhead of transferring the data to and from another
memory buffer involved in a file system.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records that can be left scattered
throughout the memory space; thus, adding, deleting, or resizing a
record does not require moving other records around in memory.
Palm OS Programmer’s Companion 173



Fi les and Databases
The Data Manager
Each record in a database is in fact a memory manager chunk. The
data manager uses memory manager functions to allocate, delete,
and resize database records.

This section explains how to use the database manager by
discussing these topics:

• Records and Databases

• Structure of a Database Header

• Using the Data Manager

Records and Databases
Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional file system can create, delete, open, and close a
traditional file. There is no restriction on where the records for a
particular database reside as long as they all reside on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory
manager design. All heaps except for the dynamic heap(s) are
nonvolatile, so database records can be stored in any heap except
the dynamic heap(s) (see “Heap Overview” in the “Memory”
chapter). Because records can be stored anywhere on the memory
card, databases can be distributed over multiple discontiguous
areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a
Palm OS device. An application finds a particular record in a
database by index. When an application requests a particular
record, the data manager fetches the local ID of the record from the
database header by index, converts the local ID to a handle using
the card number that contains the database header, and returns the
handle to the record.
174 Palm OS Programmer’s Companion



Fi les and Databases
The Data Manager
Structure of a Database Header
A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers,
discussing these topics:

• Database Header Fields

• Structure of a Record Entry in a Database Header

IMPORTANT: Expect the database header structure to change
in the future. Use the API to work with database structures.

Database Header Fields

The database header has the following fields:

• The name field holds the name of the database.

• The attributes  field has flags for the database.

• The version  field holds an application-specific version
number for that database.

• The modificationNumber  is incremented every time a
record in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

• The appInfoID  is an optional field that an application can
use to store application-specific information about the
database. For example, it might be used to store user display
preferences for a particular database.

• The sortInfoID is another optional field an application can
use for storing the local ID of a sort table for the database.

• The type  and creator  fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application.

• The numRecords  field holds the number of record entries
stored in the database header itself. If all the record entries
Palm OS Programmer’s Companion 175



Fi les and Databases
The Data Manager
cannot fit in the header, then nextRecordList has the local
ID of a recordList  that contains the next set of records.

Each record entry stored in a record list has three fields and is
8 bytes in length. Each entry has the local ID of the record
which takes up 4 bytes: 1 byte of attributes and a 3-byte
unique ID for the record. The attribute  field, shown in
Figure 7.1, is 8 bits long and contains 4 flags and a 4-bit
category number. The category number is used to place
records into user-defined categories like “business” or
“personal.”

Figure 7.1 Record Attributes

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

• Local IDs make the database slot-independent. Since all
records for a database reside on the same memory card as the
header, the handle of any record in the database can be
quickly calculated. When an application requests a specific
record from a database, the data manager returns a handle to
the record that it determines from the stored local ID.

A special situation occurs with ROM-based databases.
Because ROM-based heaps use nonmovable chunks
exclusively, the local IDs to records in a ROM-based database
are local IDs of pointers, not handles. So, when an
application opens a ROM-based database, the data manager
allocates and initializes a fake handle for each record and
returns the appropriate fake handle when the application

Category (4)

secret  bit

busy  bit

dirty  bit

delete  bit
176 Palm OS Programmer’s Companion



Fi les and Databases
The Data Manager
requests a record. Because of this, applications can use
handles to access both RAM- and ROM-based database
records.

• The unique ID must be unique for each record within a
database. It remains the same for a particular record no
matter how many times the record is modified. It is used
during synchronization with the desktop to track records on
the Palm OS device with the same records on the desktop
system.

When the user deletes or archives a record on Palm OS:

• The delete  bit is set in the attributes  flags, but its entry
in the database header remains until the next
synchronization with the PC.

• The dirty  bit is set whenever a record is updated.

• The busy  bit is set when an application currently has a
record locked for reading or writing.

• The secret  bit is set for records that should not be
displayed before the user password has been entered on the
device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the local ID stored in the record entry is set to 0,
and the delete bit is set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
local ID is preserved. This way, the next time the user synchronizes
with the desktop system, the desktop can quickly determine which
records to delete (since their record entries are still around on the
Palm OS device). In the case of archived records, the desktop can
save the record data on the PC before it permanently removes the
record entry and data from the Palm OS device. For deleted records,
the PC just has to delete the same record from the PC before
permanently removing the record entry from the Palm OS device.

Using the Data Manager
Using the data manager is similar to using a traditional file
manager, except that the data is broken down into multiple records
instead of being stored in one contiguous chunk. To create or delete
a database, call DmCreateDatabase  and DmDeleteDatabase .
Palm OS Programmer’s Companion 177



Fi les and Databases
The Data Manager
Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the local ID of the database
header. Calling DmFindDatabase  searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DmGetDatabase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the
system locks down the database header and returns a reference to a
database access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo , DmSetDatabaseInfo , and
DmDatabaseSize  to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DmGetRecord , DmQueryRecord , and DmReleaseRecord
when viewing or updating a database.

• DmGetRecord  takes a record index as a parameter, marks
the record busy, and returns a handle to the record. If a
record is already busy when DmGetRecord  is called, an
error is returned.

• DmQueryRecord  is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmReleaseRecord when finished viewing
the record.

• DmReleaseRecord  clears the busy  bit, and updates the
modification number of the database and marks the record
dirty if the dirty  parameter is true.

To resize a record to grow or shrink its contents, call
DmResizeRecord . This routine automatically reallocates the
record in another heap of the same card if the current heap does not
have enough space for it. Note that if the data manager needs to
move the record into another heap to resize it, the handle to the
178 Palm OS Programmer’s Companion



Fi les and Databases
The Data Manager
record changes. DmResizeRecord  returns the new handle to the
record.

To add a new record to a database, call DmNewRecord. This routine
can insert the new record at any index position, append it to the
end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRemoveRecord,
DmDeleteRecord , and DmArchiveRecord.

• DmRemoveRecord removes the record’s entry from the
database header and disposes of the record data.

• DmDeleteRecord  also disposes of the record data, but
instead of removing the record’s entry from the database
header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

• DmArchiveRecord  does not dispose of the record’s data; it
just sets the deleted bit in the record entry.

Both DmDeleteRecord  and DmArchiveRecord  are useful for
synchronizing information with a desktop PC. Since the unique ID
of the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DmRecordInfo  and DmSetRecordInfo  to retrieve or set the
record information stored in the database header, such as the
attributes, unique ID, and local ID of the record. Typically, these
routines are used to set or retrieve the category of a record that is
stored in the lower four bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DmMoveRecord, DmAttachRecord , and
DmDetachRecord . DmDetachRecord removes a record entry from
the database header and returns the record handle. Given the
handle of a new record, DmAttachRecord  inserts or appends that
new record to a database or replaces an existing record with the new
record. DmMoveRecord is an optimized way to move a record from
one index to another in the same database.
Palm OS Programmer’s Companion 179



Fi les and Databases
The Resource Manager
The Resource Manager
Applications can use the resource manager much like the data
manager to retrieve and save chunks of data conveniently. The
resource manager has the added capability of tagging each chunk of
data with a unique resource type and resource ID. These tagged
data chunks, called resources, are stored in resource databases.
Resource databases are almost identical in structure to normal
databases except for a slight amount of increased storage overhead
per resource record (two extra bytes). In fact, the resource manager
is nothing more than a subset of routines in the data manager that
are broken out here for conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS
environment, an application is, in fact, simply a resource database
with the executable code stored as one or more code resources and
the graphics elements and other miscellaneous data stored in the
same database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

This section explains how to work with the resource manager and
discusses these topics:

• Structure of a Resource Database Header

• Using the Resource Manager

• Resource Manager Functions

Structure of a Resource Database Header
A resource database header consists of some general database
information followed by a list of resources in the database. The first
portion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdrAttrResDB  bit in the attributes
field.
180 Palm OS Programmer’s Companion



Fi les and Databases
The Resource Manager
IMPORTANT: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

• The name field holds the name of the resource database.

• The attributes field has flags for the database and always
has the dmHdrAttrResDB  bit set.

• The modificationNumber  is incremented every time a
resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

• The appInfoID  and sortInfoID  fields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may
optionally use these fields for its own purposes.

• The type  and creator  fields hold 4-byte signatures of the
database type  and creator  as defined by the application
that created the database.

• The numResources  field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info
entries cannot fit in the header, however, then
nextResourceList has the chunkID of a resourceList
that contains the next set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the local ID of the memory manager chunk that
contains the resource data.

Using the Resource Manager
You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-
level) routines in the data manager such as DmCreateDatabase ,
DmDeleteDatabase , DmDatabaseInfo , and so on.

When you create a new database using DmCreateDatabase , the
type of database created (record or resource) depends on the value
Palm OS Programmer’s Companion 181



Fi les and Databases
The Resource Manager
of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB  bit is set in the attributes  field of the
database header. Given a database header ID, an application can
determine which type of database it is by calling DmDatabaseInfo
and examining the dmHdrAttrResDB  bit in the returned
attributes  field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
DmGetResource  and DmReleaseResource  routines.

DmGetResource  r eturns a handle to a resource, given the type
and ID. This routine searches all open resource databases for a
resource of the given type and ID, and returns a handle to it. The
search starts with the most recently opened database. To search only
the most recently opened resource database for a resource instead of
all open resource databases, call DmGet1Resource .

DmReleaseResource should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DmResizeResource , which accepts a handle to a resource and
reallocates the resource in another heap of the same card if
necessary. It returns the handle of the resource, which might have
been changed if the resource had to be moved to another heap to be
resized.

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set
resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be
specified. Call DmSearchResource  to find a resource by type and
ID or by pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase  and pass nil as the current
DmOpenRef. To find out the DmOpenRef of each successive
database, call DmNextOpenResDatabase  repeatedly with each
successive DmOpenRef.
182 Palm OS Programmer’s Companion



Fi les and Databases
File Streaming Application Program Interface
Given the access pointer of a specific open resource database,
DmFindResource  can be used to return the index of a resource,
given its type and ID. DmFindResourceType  can be used to get
the index of every resource of a given type. To get a resource handle
by index, call DmGetResourceIndex .

To determine how many resources are in a given database, call
DmNumResources. To get and set attributes of a resource including
its type and ID, call DmResourceInfo and DmSetResourceInfo .
To attach an existing data chunk to a resource database as a new
resource, call DmAttachResource . To detach a resource from a
database, call DmDetachResource .

To create a new resource, call DmNewResource and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DmRemoveResource. Removing a resource disposes of its data
chunk and removes its entry from the database header.

File Streaming Application Program Interface
The file streaming functions in Palm OS 3.0 and later let you work
with large blocks of data. File streams can be arbitrarily large—they
are not subject to the 64 KB maximum size limit imposed by the
memory manager on allocated objects. File streams can be used for
permanent data storage; in Palm OS 3.0, their underlying
implementation is a Palm OS database. You can read, write, seek to
a specified offset, truncate, and do everything else you'd expect to
do with a desktop-style file.

Other than backup/restore, Palm OS does not provide direct Hot
Sync support for file streams, and none is planned at this time.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API
The File Streaming API is derived from the C programming
language’s <stdio.h>  interface. Any C book that explains the
<stdio.h>  interface should serve as a suitable introduction to the
Palm OS Programmer’s Companion 183



Fi les and Databases
File Streaming Application Program Interface
concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The FileOpen  function opens a file, and the FileRead  function
reads it. The semantics of FileRead  and FileWrite  are just like
their <stdio.h>  equivalents, the fread  and fwrite  functions.
The other <stdio.h>  routines have obvious analogs in the File
Streaming API as well.

For example,

theStream = FileOpen(cardId,"KillerAppDataFile",
'KILR', 'KILD', fileModeReadOnly,
&err);

As on a desktop, the filename is the unique item. The creator ID and
file type are for informational purposes and your code may require
that an opened file have the correct type and creator.

Normally, the FileOpen function returns an error when it attempts
to open or replace an existing stream having a type and creator that
do not match those specified. To suppress this error, pass the
fileModeAnyTypeCreator selector as a flag in the openMode
parameter to the FileOpen  function.

To read data, use the FileRead  function as in the following
example:

FileRead(theStream, &buf, objSize, numObjs,
&err);

To free the memory used to store stream data as the data is read, you
can use the FileControl  function to switch the stream to
destructive read mode. This mode is useful for manipulating
temporary data; for example, destructive read mode would be ideal
for adding the objects in a large data stream to a database when
sufficient memory for duplicating the entire file stream is not
available. You can switch a stream to destructive read mode by
passing the fileOpDestructiveReadMode  selector as the value
of the op  parameter to the FileControl  function.

The FileDmRead  function can read data directly into a Database
Manager chunk for immediate addition to a Palm OS database.
184 Palm OS Programmer’s Companion



Fi les and Databases
Summary of Files and Databases
Summary of Files and Databases
Data Manager Functions

Creating Databases

DmCreateDatabase DmCreateDatabaseFromImage

Opening and Closing Databases

DmOpenDatabase
DmDatabaseProtect

DmCloseDatabase
DmOpenDatabaseByTypeCreator

Creating Records

DmNewHandle DmNewRecord

Accessing Records

DmGetRecord
DmFindRecordByID

DmQueryRecord
DmSearchRecord

Adding Records

DmAttachRecord

Unlocking Records

DmReleaseRecord

Changing Records

DmMoveRecord
DmSet
DmWrite

DmResizeRecord
DmStrCopy
DmWriteCheck

Deleting Records

DmArchiveRecord
DmDeleteRecord
DmRemoveRecord

DmDeleteDatabase
DmDetachRecord
DmRemoveSecretRecords

Sorting

DmInsertionSort
DmFindSortPosition

DmFindSortPositionV10
DmQuickSort
Palm OS Programmer’s Companion 185



Fi les and Databases
Summary of Files and Databases
Categories

DmMoveCategory
DmDeleteCategory
DmQueryNextInCategory

DmNumRecordsInCategory
DmPositionInCategory
DmSeekRecordInCategory

Locating Databases

DmFindDatabase
DmGetDatabase
DmNextOpenDatabase

DmGetNextDatabaseByTypeCreator

Database Information

DmDatabaseInfo
DmRecordInfo
DmOpenDatabaseInfo
DmNumDatabases

DmSetDatabaseInfo
DmSetRecordInfo
DmDatabaseSize
DmNumRecords

Application Information

DmGetAppInfoID

Error Handling

DmGetLastErr

Resource Manager Functions

DmOpenDBNoOverlay
DmNewResource
DmReleaseResource
DmDetachResource
DmSearchResource
DmFindResourceType
DmGetResource
DmNumResources
DmResourceInfo

DmAttachResource
DmRemoveResource
DmGetResourceIndex
DmFindResource
DmGet1Resource
DmNextOpenResDatabase
DmResizeResource
DmSetResourceInfo

Data Manager Functions
186 Palm OS Programmer’s Companion



Fi les and Databases
Summary of Files and Databases
File Streaming Function Summary

Opening and Closing

FileOpen
FileSeek

FileClose

Reading Files

FileRead
FileRewind

FileDmRead
FileControl

Writing to Files

FileWrite FileTruncate

File Information

FileEOF FileTell

Deleting Files

FileDelete FileFlush

Error Handling

FileError
FileClearerr

FileGetLastError
Palm OS Programmer’s Companion 187





8
Palm System
Features
In this chapter, you learn how to work with the features that the
Palm OS® system provides, such as sound, alarms, and floating-
point operations. Most parts of the Palm OS are controlled by a
manager, which is a group of functions that work together to
implement a certain functionality. As a rule, all functions that
belong to one manager use the same prefix and work together to
implement a certain aspect of functionality.

This chapter discusses these topics:

• Alarms

• Features

• Notifications

• Sound

• System Boot and Reset

• Hardware Interaction

• The Microkernel

• Retrieving the ROM Serial Number

• Time

• Floating-Point

• Summary of System Features

Alarms
The Palm OS alarm manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a
reminder. The alarm manager:
Palm OS Programmer’s Companion 189



Palm System Features
Alarms
• Works closely with the time manager to handle real-time
alarms.

• Sends launch codes to applications that set a specific time
alarm to inform the application the alarm is due.

• Handles alarms by application in a two cycle operation

– First, it notifies each application that the alarm has
occurred.

– Second, it allows each application to display some UI.

• Allows only one alarm to be set per application.

However, the alarm manager:

• Doesn’t provide reminder dialog boxes.

• Doesn’t play the alarm sound.

This section looks in some detail at how the alarm manager and
applications interact when processing an alarm. It covers:

• Setting an Alarm

• Alarm Scenario

• Setting a Procedure Alarm

Setting an Alarm
The most common use of the alarm manager is to set a real-time
alarm within an application. Often, you set this type of alarm
because you want to inform the user of an event. For example, the
Datebook application sets alarms to inform users of their
appointments.

Implementing such an alarm is a two step process. First, use the
function AlmSetAlarm  to set the alarm. Specify when the alarm
should trigger and which application should be informed at that
time.

Listing 8.1 shows how the Datebook application sets an alarm.

Listing 8.1 Setting an alarm

static void SetTimeOfNextAlarm (UInt32 alarmTime,
190 Palm OS Programmer’s Companion



Palm System Features
Alarms
UInt32 ref)
{

UInt16 cardNo;
LocalID dbID;
DmSearchStateType searchInfo;

DmGetNextDatabaseByTypeCreator (true,
&searchInfo,

sysFileTApplication, sysFileCDatebook, true,
&cardNo, &dbID);

AlmSetAlarm (cardNo, dbID, ref, alarmTime,
true);
}

Second, have your PilotMain  function respond to the launch
codes sysAppLaunchCmdAlarmTriggered  and
sysAppLaunchCmdDisplayAlarm .

When an alarm is triggered, the alarm manager notifies each
application that set an alarm for that time via the
sysAppLaunchCmdAlarmTriggered  launch code. After each
application has processed this launch code, the alarm manager
sends each application sysAppLaunchCmdDisplayAlarm  so that
the application can display the alarm. The section “Alarm Scenario”
gives more information about when these launch codes are received
and what actions your application might take. For a specific
example of responding to these launch codes, see the Datebook
sample code.

It’s important to note the following:

• An application can have only one alarm pending at a time. If
you call AlmSetAlarm  and then call it again before the first
alarm has triggered, the alarm manager replaces the first
alarm with the second alarm. You can use the AlmGetAlarm
function to find out if the application has any alarms
pending.

• You do not have access to global variables or code outside
segment 0 (in a multi-segment application) when you
respond to the launch codes. AlmSetAlarm  takes a UInt32
parameter that you can use to pass a specific value so that
Palm OS Programmer’s Companion 191



Palm System Features
Alarms
you have access to it when the alarm triggers. (This is the ref
parameter shown in Listing 8.1.) The parameter blocks for
both launch codes provide access to this reference parameter.
If the reference parameter isn’t sufficient, you can define an
application feature. See the section “Features” in this chapter.

• The database ID that you pass to AlmSetAlarm  is the local
ID of the application (the prc file), not of the record database
that the application accesses. You use record database’s local
ID more frequently than you do the application’s local ID, so
this is a common mistake to make.

• In AlmSetAlarm , the alarm time is given as the number of
seconds since 1/1/1904. If you need to convert a
conventional date and time value to the number of seconds
since 1/1/1904, use TimDateTimeToSeconds .

• If you want to clear a pending alarm, call AlmSetAlarm
with 0 specified for the alarm seconds parameter.

Alarm Scenario
Here’s how an application and the alarm manager typically interact
when processing an alarm:

1. The application sets an alarm using AlmSetAlarm .

The alarm manager adds the new alarm to its alarm queue.
The alarm queue contains all alarm requests. Triggered
alarms are queued up until the alarm manager can send the
launch code to the application that created the alarm.
However, if the alarm queue becomes full, the oldest entry
that has been both triggered and notified is deleted to make
room for a new alarm.

2. When the alarm time is reached, the alarm manager searches
the alarm queue for the first application that set an alarm for
this alarm time.

3. The alarm manager sends this application the
sysAppLaunchCmdAlarmTriggered  launch code.

4. The application can now:

– Set the next alarm.

– Play a short sound.
192 Palm OS Programmer’s Companion



Palm System Features
Alarms
– Perform some quick maintenance activity.

The application should not perform any lengthy tasks in
response to sysAppLaunchCmdAlarmTriggered  because
doing so will delay other applications from receiving alarms
that are set to trigger at the same time.

If this alarm requires no further processing, the application
should set the purgeAlarm  field in the launch code’s
parameter block to true before returning. Doing so removes
the alarm from the queue, which means it won’t receive the
sysAppLaunchCmdDisplayAlarm  launch code.

5. The alarm manager finds in the alarm queue the next
application that set an alarm and repeats steps 2 and 3.

6. This process is repeated until no more applications are found
with this alarm time.

7. The alarm manager then finds once again the first application
in the alarm queue who set an alarm for this alarm time and
sends this application the launch code
sysAppLaunchCmdDisplayAlarm .

8. The application can now:

– Display a dialog box.

– Display some other type of reminder.

9. The alarm manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and step 6 and 7 are repeated.

10.This process is repeated until no more applications are found
with this alarm time.

If a new alarm time is triggered while an older alarm is still
being displayed, all applications with alarms scheduled for
this second alarm time are sent the
sysAppLaunchCmdAlarmTriggered  launch code, but the
display cycle for the second set of alarms is postponed until
all earlier alarms have finished displaying.

Setting a Procedure Alarm
Beginning with Palm OS version 3.2, the system supports setting
procedure alarms in addition to the application-based alarms
Palm OS Programmer’s Companion 193



Palm System Features
Alarms
described in the previous sections. The differences between a
procedure alarm and an application-based alarm are:

• When you set a procedure alarm, you specify a pointer to a
function that should be called when the alarm triggers
instead of an application that should be notified.

• When the alarm triggers, the alarm manager calls the
specified procedure directly instead of using launch codes.

• If the system is in sleep mode, the alarm triggers without
causing the LCD to light up.

You might use procedure alarms if:

• You want to perform a background task that is completely
hidden from the user.

• You are writing a shared library and want to implement an
alarm within that library.

To set a procedure alarm, you call AlmSetProcAlarm  instead of
AlmSetAlarm . (Similarly, you use the AlmGetProcAlarm function
instead of AlmGetAlarm  to see if any alarms are pending for this
procedure.)

AlmSetProcAlarm  is currently implemented as a macro that calls
AlmSetAlarm using a special value for the card number parameter
to notify the alarm manager that this is a procedure alarm. Instead
of specifying the application’s local ID and card number, you
specify a function pointer. The other rules for AlmSetAlarm  still
apply. Notably, a given function can only have one alarm pending at
a time, and you can clear any pending alarm by passing 0 for the
alarm time.

When the alarm triggers, the alarm manager calls the function you
specified. The function should have the prototype:
194 Palm OS Programmer’s Companion



Palm System Features
Features
void myAlarmFunc  (UInt16 almProcCmd,
SysAlarmTriggeredParamType *paramP)

IMPORTANT: The function pointer must remain valid from the
time AlmSetProcAlarm  is called to the time the alarm is
triggered. If the procedure is in a shared library, you must keep
the library open. If the procedure is in a separately loaded code
resource, the resource must remain locked until the alarm fires.
When you close a library or unlock a resource, you must remove
any pending alarms. If you don’t, the system will crash when the
alarm is triggered.

The first parameter to your function specifies why the alarm
manager has called the function. Currently, the alarm manager calls
the function in two instances:

• The alarm has triggered.

• The user has changed the system time, so the alarm time
should be adjusted.

The second parameter is the same structure that is passed with the
sysAppLaunchCmdAlarmTriggered  launch code. It provides
access to the reference parameter specified when the alarm was set,
the time specified when the alarm was set, and the purgeAlarm
field, which specifies if the alarm should be removed from the
queue. In the case of procedure alarms, the alarm should always be
removed from the queue. The system sets the purgeAlarm value to
true  after calling your function.

Features
A feature is a 32-bit value that has special meaning to both the
feature publisher and to users of that feature. Features can be
published by the system or by applications.

Each feature is identified by a feature creator and a feature number:

• The feature creator is a unique creator registered with Palm,

Inc®. You usually use the creator type of the application that
publishes the feature.
Palm OS Programmer’s Companion 195



Palm System Features
Features
• The feature number is any 16-bit value used to distinguish
between different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
unregistered or the device is reset. A feature published by an
application sticks around even after the application quits.

This section introduces the feature manager by discussing these
topics:

• The System Version Feature

• Application-Defined Features

• Using the Feature Manager

• Feature Memory

The System Version Feature
An example for a feature is the system version. This feature is
published by the system and contains a 32-bit representation of the
system version. The system version has a feature creator of
sysFtrCreator  and a feature number of
sysFtrNumROMVersion ). Currently, the different versions of the
system software have the following numbers:

Any application can find out the system version by looking for this
feature. For example:

// See if we're on ROM version 2.0 or later.
FtrGet(sysFtrCreator, sysFtrNumROMVersion,

0x01003001 Palm OS 1.0

0x02003000 Palm OS 2.0

0x03003000 Palm OS 3.0

0x03103000 Palm OS 3.1

0x03103000 Palm OS 3.1

0x03103000 Palm OS 3.1

0x03203000 Palm OS 3.2

0x03503000 Palm OS 3.5
196 Palm OS Programmer’s Companion



Palm System Features
Features
&romVersion);
if (romVersion >= 0x02000000) {

....
}

Other system features are defined in SystemMgr.h . System
features are stored in a feature table in the ROM. (In Palm OS 3.1
and higher, the contents of this table are copied into the RAM
feature table at system startup.) Checking for the presence of system
features allows an application to be compatible with multiple
versions of the system by refining its behavior depending on which
capabilities are present or not. Future hardware platforms may lack
some capabilities present in the first platform, so checking the
system version feature is important.

IMPORTANT: For best results, we recommend that you check
for specific features rather than relying on the system version
number to determine if a specific API is available. For more
details on checking for features, see the appendix Compatibility
Guide in Palm OS SDK Reference.

Application-Defined Features
Applications may find the feature manager useful for their own
private use. For example, an application may want to publish a
feature that contains a pointer to some private data it needs for
processing launch codes. Because an application’s global data is not
generally available while it processes launch codes, using the
feature manager is usually the easiest way for an application to get
to its data.

The feature manager maintains one feature table in the RAM as well
as the feature table in the ROM. Application-defined features are
stored in the RAM feature table.

Using the Feature Manager
To check whether a particular feature is present, call FtrGet  and
pass it the feature creator and feature number. If the feature exists,
Palm OS Programmer’s Companion 197



Palm System Features
Features
FtrGet returns the 32-bit value of the feature. If the feature doesn’t
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
FtrSet and pass the feature creator, number, and the 32-bit value of
the feature. A published feature remains available until it is
explicitly removed by a call to FtrUnregister or until the system
resets; simply quitting an application doesn’t remove a feature
published by that application.

Call FtrUnregister  to remove features that were created by
calling FtrSet .

You can get a complete list of all published features by calling
FtrGetByIndex repeatedly. Passing an index value starting at 0 to
FtrGetByIndex  and incrementing repeatedly by 1 eventually
returns all available features. FtrGetByIndex accepts a parameter
that specifies whether to search the ROM feature table or RAM
feature table. Note that in Palm OS version 3.1 and higher, the
contents of the ROM table are copied into the RAM table at system
startup; thus the RAM table serves the entire system.

Feature Memory
Palm OS 3.1 adds support for feature memory. Feature memory
provides quick, efficient access to data that persists between
invocations of an application. The values stored in feature memory
persist until the device is reset or until you explicitly free the
memory. Feature memory is memory allocated from the storage
heap. Thus, you write to feature memory using DmWrite , which
means that writing to feature memory is no faster than writing to a
database. However, feature memory can provide more efficient
access to that data in certain circumstances.

To allocate a chunk of feature memory, call FtrPtrNew , specifying a
feature creator, a feature number, the number of bytes to allocate,
and a location where the feature manager can return a pointer to the
newly allocated memory chunk. For example:

FtrPtrNew(appCreator,
myFtrMemFtr, 32, &ftrMem);

Elsewhere in your application, you can obtain the pointer to the
feature memory chunk using FtrGet .
198 Palm OS Programmer’s Companion



Palm System Features
Features
NOTE: Starting with Palm OS 3.5 FtrPtrNew  allows allocating
chunks larger than 64k. Do keep in mind standard issues with
allocating large chunks of memory: there might not be enough
contiguous space, and it can impact system performance.

Feature memory is considered a performance optimization. The
conditions under which you'd use it are not common, and you
probably won't find them in a typical application. You use feature
memory in code that:

• Is executed infrequently

• Does not have access to global variables

• Needs access to data whose contents change infrequently
and that cannot be stored in a 32-bit feature value

For example, suppose you've written a function that is called in
response to a launch code, and you expect to receive this launch
code frequently. Suppose that function needs access to the
application's preferences database. At the start of the function,
you'd need to open the database and read the data from it. If the
function is called frequently, opening the database each time can be
a drain on performance. Instead, you can allocate a chunk of feature
memory and write the values you need to that chunk. Because the
chunk persists until the device is reset, you only need to open the
database once. Listing 8.2 illustrates this example.

Listing 8.2 Using feature memory

MyAppPreferencesType prefs;

if (FtrGet(appCreator, myPrefFtr, (UInt32*)&prefs)
!= 0) {

// Feature memory doesn't exist, so allocate it.
FtrPtrNew(appCreator, myPrefFtr, 32, &thePref);

// Load the preferences database.
PrefGetAppPreferences (appCreator, prefID,

&prefs,
Palm OS Programmer’s Companion 199



Palm System Features
Notifications
sizeof(prefs), true);

// Write it to feature memory.
DmWrite(thePref, 0, &prefs, sizeof(prefs));

}
// Now prefs is guaranteed to be defined.

Another potential use of feature memory is to “publish” data from
your application or library to other applications when that data
doesn’t fit in a normal 32-bit feature value. For example, suppose
you are writing a communications library and you want to publish
an icon that client applications can use to draw the current
connection state. The library can use FtrPtrNew  to allocate a
feature memory chunk and store an icon representing the current
state in that location. Applications can then use FtrGet  to access
the icon and pass the result to WinDrawBitmap  to display the
connection state on the screen.

Notifications
On systems where the Notification Feature Set is present, your
application can receive notifications when certain system-level
events or application-level events occur. Notifications are similar to
application launch codes, but differ from them in two important
ways:

• Notifications can be sent to any code resource, such as a
shared library or a system extension (for example, a hack
installed with the HackMaster program). Launch codes can
only be sent to applications. Any code resource that is
registered to receive a notification is called a notification
client.

• Notifications are only sent to applications or code resources
that have specifically registered to receive them, making
them more efficient than launch codes. Many launch codes
are sent to all installed applications to give each application a
chance to respond.

The Palm OS system and the built-in applications send notifications
when certain events occur. See the chapter “Notification Manager”
on page 665 in the Palm OS SDK Reference for a complete list. (The
200 Palm OS Programmer’s Companion



Palm System Features
Notifications
notification manager broadcasts the notifications and maintains a
list of clients for each notification).

It’s also possible for your application to create and broadcast its own
notifications. However, doing so is rare. It’s more likely that you’ll
want to register to receive the predefined notifications.

Three general types of event flow are possible using the notification
manager:

• Single consumer

Each client is notified that the event has occurred and
handles it in its own way without modifying any information
in the parameter block.

• Collaborative

The notification’s parameter block contains a handled  flag.
Clients can set this flag to communicate to other clients that
the event has been handled, while still allowing them to
receive the notification. An example of this is the
sysNotifyAntennaRaisedEvent  for Palm VII™ series
devices. A client might decide to handle the antenna key
down event and in this case, sets handled to true to inform
other clients that the event has been handled.

• Collective

Each client can add information to the notification’s
parameter block, allowing the data to be accumulated for all
clients. This style of notification could be used, for example,
to build a menu dynamically by letting each client add its
own menu text. The sysNotifyMenuCmdBarOpenEvent is
similar to this style of notification.

Registering for a Notification
To receive notification that an event has occurred, you must register
for it using the SysNotifyRegister  function. Once you register
for a notification, you remain registered until the system is reset or
until you explicitly unregister for this notification using
SysNotifyUnregister .

To register an application for the HotSync® notification, you’d use a
function call similar to the one in Listing 8.3.
Palm OS Programmer’s Companion 201



Palm System Features
Notifications
Listing 8.3 Registering an application for a notification

SysNotifyRegister(myCardNo, appDBID,
sysNotifySyncStartEvent, NULL,
sysNotifyNormalPriority, myDataP);

If you are writing a shared library instead of an application and you
want to be notified about the HotSync event, your call to
SysNotifyRegister  looks slightly different. See Listing 8.4.

Listing 8.4 Registering a shared library for a notification

SysNotifyRegister(myCardNo, shlibDBID,
sysNotifySyncStartEvent, SyncNotifyHandler,
sysNotifyNormalPriority, myDataP);

The parameters you pass to the SysNotifyRegister  function
specify the following:

• The first two parameters are the card number and database
ID for the prc  file. Be sure you’re not passing the local ID of
the record database that your application accesses. You use
the record database’s local ID more frequently than you do
the application’s local ID, so this is a common mistake to
make.

• sysNotifySyncStartEvent  specifies that you want to be
informed when a HotSync operation is about to start. There
is also a sysNotifySyncFinishEvent that specifies that a
HotSync operation has ended.

• The next parameter specifies how the notification should be
received. This is where Listing 8.3 and Listing 8.4 differ.

Applications use NULLfor this parameter to specify that they
should be notified through the application launch code
sysAppLaunchCmdNotify . As with all other launch codes,
the system passes this to the application’s PilotMain
function.

The shared library has no PilotMain function and therefore
no way to receive a launch code, so it passes a pointer to a
202 Palm OS Programmer’s Companion



Palm System Features
Notifications
callback routine. Only use a callback routine if your code
doesn’t have a PilotMain .

Note that it’s always necessary to pass the card number and
database ID of your prc  file even if you specify a callback
routine.

• sysNotifyNormalPriority  means that you don’t want
your code to receive any special consideration when
receiving the notification. Notifications are broadcast
synchronously in priority order. The lower the number you
specify here, the earlier you receive the notification in the list.

In virtually all cases, you should use
sysNotifyNormalPriority . If you absolutely must
ensure that your code is notified in a certain order (either
before most notifications or after most notifications), use a
value between –15 and +15 for the priority. Using a value in
this range ensures that your code won’t collide with the
system’s handling of notifications.

• myDataP  is a pointer to any data you need to access in your
notification handler routine. As with most launch codes,
sysAppLaunchCmdNotify  does not provide access to
global variables, so you should use this pointer to pass
yourself any needed data.

After you’ve made the calls shown in Listing 8.3 and Listing 8.4 and
the system is about to begin a HotSync operation, it broadcasts the
sysNotifySyncStartEvent  notification to both clients.

The application is notified through the sysAppLaunchCmdNotify
launch code. This launch code’s parameter block is a
SysNotifyParamType structure containing the notification name,
the broadcaster, and a pointer to your specific data (myDataP in the
example above). Some notifications contain extra information in a
notifyDetailsP field in this structure. The HotSync notifications
do not use the notifyDetailsP  field.

The shared library is notified by a call to its SyncNotifyHandler
function. This function is passed the same SysNotifyParamType
structure that is passed through the launch code mechanism.
Palm OS Programmer’s Companion 203



Palm System Features
Notifications
IMPORTANT: Because the callback pointer is used to directly
call the function, the pointer must remain valid from the time
SysNotifyRegister  is called to the time the notification is
broadcast. If the function is in a shared library, you must keep the
library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast.

Writing a Notification Handler
The application’s response to sysAppLaunchCmdNotify  and the
shared library’s callback function are called notification handlers.
A notification handler may perform any processing necessary,
including displaying a user interface or broadcasting other
notifications.

When displaying a user interface, consider the possibility that you
may be blocking other applications from receiving the notification.
For this reason, it’s generally not a good idea to display a modal
form or do anything else that requires waiting for the user to
respond. Also, many of the notifications are broadcast during
SysHandleEvent , which means your application event loop may
not have progressed to the point where it is possible for you to
display a user interface, or you may overflow the stack.

If you need to perform some lengthy process in a notification
handler, one way to ensure that you aren’t blocking other events is
to send yourself a deferred notification. For example, Listing 8.5
shows a notification handler for the
sysNotifyTimeChangeEvent notification that performs no work
other than setting up a deferred notification
(myDeferredNotifyEvent ) and scheduling it for broadcast.
When the application receives the myDeferredNotifyEvent , it
calls the MyNotifyHandler  function, which is where the
application really handles the time change event.
204 Palm OS Programmer’s Companion



Palm System Features
Notifications
Listing 8.5 Deferring notification within a handler

case sysAppLaunchCmdNotify :
if (cmdPBP->notify->notifyType == sysNotifyTimeChangeEvent) {

SysNotifyParamType notifyParm;
MyGlobalsToAccess myData;

/* initialize myData here */

/* Create the notification block. */
notifyParam.notifyType = myDeferredNotifyEvent;
notifyParam.broadcaster = myCreatorID;
notifyParam.notifyDetailsP= NULL;
notifyParam.handled = false;

/* Register for my notification */
SysNotifyRegister(myCardNo, appDBID, myDeferredNotifyEvent,

NULL, sysNotifyNormalPriority, &myData);

/* Broadcast the notification */
SysNotifyBroadcastDeferred(&notifyParam, NULL);

} else if (cmdPBP->notify->notifyType == myDeferredNotifyEvent)
MyNotifyHandler(cmdPBP->notify);

break;

The SysNotifyBroadcastDeferred  function broadcasts the
specified notification to all interested parties; however, it waits to do
so until the current event has completed processing. Thus, by using
a separate deferred notification, you can be sure that all other clients
have had a chance to respond to the first notification.

There are two functions that broadcast notifications:
SysNotifyBroadcast , which immediately broadcasts the
notification, and SysNotifyBroadcastDeferred , which waits
until the next time EvtGetEvent  is called. Notification handlers
should use SysNotifyBroadcastDeferred  to avoid the
possibility of overflowing the notification stack.
Palm OS Programmer’s Companion 205



Palm System Features
Notifications
A special case of dealing with lengthy computations in a notification
handler occurs when the system is being put to sleep. See “Sleep
and Wake Notifications” below.

Sleep and Wake Notifications
Several notifications are broadcast at various stages when the
system goes to sleep and when the system wakes up. These are:

• sysNotifySleepRequestEvent

• sysNotifySleepNotifyEvent

• sysNotifyEarlyWakeupEvent

• sysNotifyLateWakeupEvent

These notifications are not guaranteed to be broadcast. For example,
if the system goes to sleep because the user removes the batteries,
sleep notifications are not sent. Thus, these notifications are
unsuitable for applications where external hardware must be shut
off to conserve power before the system goes to sleep.

If you want to know when the system is going to sleep because you
have a small amount of cleanup that should occur beforehand, then
register for sysNotifySleepNotifyEvent .

It is recommended that you not perform any sort of prolonged
activity, such as displaying an alert panel that requests
confirmation, in response to a sleep notification. If you do, the alert
might be displayed long enough to trigger another auto-off event,
which could be detrimental to other handlers of the sleep notify
event.

In a few instances, you might need to prevent the system from going
to sleep. For example, your code might be in the middle of
performing some lengthy computation or in the middle of
attempting a network connection. If so, register for the
sysNotifySleepRequestEvent  instead. This notification
informs all clients that the system might go to sleep. If necessary,
your handler can delay the sleep request by doing the following:

notify->notifyDetailsP->deferSleep++;

The system checks the deferSleep  value when each notification
handler returns. If it is nonzero, it cancels the sleep event.
206 Palm OS Programmer’s Companion



Palm System Features
Sound
After you defer sleep, your code is free to finish what it was doing.
When it is finished, you must allow the system to continue with the
sleep event. To do so, create a keyDownEvent  with the
resumeSleepChr  and the command key bit set (to signal that the
character is virtual) and add it to the event queue. When the system
receives this event, it will again broadcast the
sysNotifySleepRequestEvent  to all clients. If deferSleep  is
0 after all clients return, then the system knows it is safe to go to
sleep, and it broadcasts the sysNotifySleepNotifyEvent  to all
of its clients.

Notice that you may potentially receive the
sysNotifySleepRequestEvent  many times before the system
actually goes to sleep, but you receive the
sysNotifySleepNotifyEvent  exactly once.

During a wake-up event, the other two notifications listed above are
broadcast. The sysNotifyEarlyWakeupEvent  is broadcast very
early on in the wakeup process, generally before the screen has
turned on. At this stage, it is not guaranteed that the system will
fully wake up. It may simply handle an alarm or a battery charger
event and go back to sleep. Most applications that need notification
of a wakeup event will probably want to register for
sysNotifyLateWakeupEvent  instead. At this stage, the screen
has been turned on and the system is guaranteed to fully wake up.

Sound
The Palm OS platform device has primitive sound generation. A
square wave is generated directly from the 68328’s PWM circuitry.
There is frequency, duration, and volume control. Additionally,
Palm OS 3.0 and higher support creating and playing standard
MIDI sounds.

The Palm OS sound manager provides an extendable API for
playing custom sounds and system sounds, and for controlling
default sound settings. Although the sound API accommodates
multichannel design, the system provides only a single sound
channel at present.

The sound hardware can play only one simple tone at a time
through an onboard piezoelectric speaker. Note that for a particular
Palm OS Programmer’s Companion 207



Palm System Features
Sound
amplitude level, the Palm III™ device is slightly louder than its
predecessors.

Single tones can be played by the SndDoCmd function and system
sounds are played by the SndPlaySystemSound  function. The
end-user can control the amplitude of alarm sounds, game sounds,
and system sounds by means of the Preferences application.
System-supplied sounds include the Information, Warning, Error,
Startup, Alarm, Confirmation, and Click sounds.

Palm OS 3.0 introduces support for Standard MIDI Files (SMFs),
format 0. An SMF is a note-by-note description of a tune—Palm OS
doesn't support sampled sound, multiple voices, or complex
“instruments.” You can download the SMF format specification
from the http://www.midi.org  Web site.

The alarm sounds used in the built-in Date Book application are
SMFs stored in the System MIDI Sounds database and can be
played by the SndPlaySmf  function.

All SMF records in the System MIDI Sounds database are available
to the user. Developers can add their own alarm SMFs to this
database as a way to add variety and personalization to their
devices. You can use the sysFileTMidi  file type and
sysFileCSystem creator to open this database.

Each record in the database is a single SMF, with a header structure
containing the user-visible name. The record includes a song header,
then a track header, followed by any number of events. The system
only recognizes the keyDown , keyUp  and tempo  events in a single
track; other commands which might be in the SMF are ignored. For
more information, see the following:

• Adding a Standard MIDI File to a Database in this chapter.

• SndCallbackInfoType in the Palm OS SDK Reference.

• SndMidiRecHdrType in the Palm OS SDK Reference.

You can use standard MIDI tools to create SMF blocks on desktop
computers, or you can write code to create them on the Palm OS
device. The sample code project “RockMusic,” particularly the
routines in the MakeSMF.c file, can be helpful to see how to create
an SMF programmatically.
208 Palm OS Programmer’s Companion



Palm System Features
Sound
Previous versions of Palm OS don't support SMFs or asynchronous
notes; don't use the new routines or commands when the FtrGet
function returns a system version of less than 0x03000000 . Doing
so will crash your application. See the section “The System Version
Feature” for more information.

Synchronous and Asynchronous Sound
The SndDoCmdfunction executes synchronously or asynchronously
according to the operation it is to perform. The sndCmdNoteOn and
sndCmdFrqOn operations execute asynchronously; that is, they are
non-blocking and can be interrupted by another sound command.
In contrast, the sndCmdFreqDurationAmp  operation is
synchronous and blocking (it cannot be interrupted).

The SndPlaySmf  function is also synchronous and blocking;
however, the Sound Manager polls the key queue periodically
during playback and halts playback in progress if it finds events
generated by user interaction with the screen, digitizer, or
hardware-based buttons. Optionally, the caller can override this
default behavior to specify that the SndPlaySmf function play the
SMF to completion without being interrupted by user events.

Using the Sound Manager
Before playing custom sounds that require a volume (amplitude)
setting, your code needs to discover the user’s current volume
settings. To do so in Palm OS 3.X, pass one of the
prefSysSoundVolume , prefGameSoundVolume , or
prefAlarmSoundVolume selectors to the PrefGetPreference
function.

NOTE: See “Sound Preferences Compatibility Information” for
important information regarding the correct use of sound
preferences in various versions of Palm OS.

You can pass the returned amplitude information to the
SndPlaySmf  function as one element of a SndSmfOptionsType
parameter block. Alternatively, you can pass amplitude information
Palm OS Programmer’s Companion 209



Palm System Features
Sound
to the SndDoCmd function as an element of a SndCommandType
parameter block.

To execute a sound manager command, pass to the SndDoCmd
function a sound channel pointer (presently, only NULLis supported
and maps to the shared channel), a pointer to a structure of
SndCommandType, and a flag indicating whether the command
should be performed asynchronously.

To play SMFs, call the SndPlaySMF  function. This function, which
is new in Palm OS 3.0, is used by the built in Date Book application
to play alarm sounds.

To play single notes, you can use either of the SndPlaySMF  or
SndDoCmd functions. Of course, you can use the SndPlaySMF
function to play a single MIDI note from an SMF. You can also use
the SndDoCmd function to play a single MIDI note by passing the
sndCmdNoteOn command selector to this function. To specify by
frequency the note to be played, pass the sndCmdFrqOn command
selector to the SndDoCmd function.You can pass the sndCmdQuiet
selector to this function to stop playback of the current note.

The system provides no specialized API for playing game sounds or
alarm sounds. When an alarm triggers, the application that set the
alarm must use the standard Sound Manager API to play the sound
associated with that alarm. Similarly, game sounds are implemented
by the game developer using any appropriate element of the Sound
Manager API. Games should observe the prefGameSoundVolume
setting, as described in the section “Sound Preferences
Compatibility Information.”

To play a default system sound, such as a click or an error beep, pass
the appropriate system sound ID to the SndPlaySystemSound
function, which will play that sound at the volume level specified
by the user’s system sound preference. For the complete list of
system sound IDs, see the SoundMgr.h  file provided by the Palm
OS SDK.

Adding a Standard MIDI File to a Database

To add a format 0 standard MIDI file to the system MIDI database,
you can use code similar to the AddSmfToDatabase  example
function shown in the following code listing. This function returns 0
if successful, and returns a non-zero value otherwise. To use a
210 Palm OS Programmer’s Companion



Palm System Features
Sound
different database, pass different creator and type values to the
DmOpenDatabaseByTypeCreator  function.

Listing 8.6 AddSmfToDatabase

// Useful structure field offset macro
#define prvFieldOffset(type, field)
((UInt32)(&((type*)0)->field))

// returns 0 for success, nonzero for error
Int16 AddSmfToDatabase(MemHandle smfH, Char*
trackName)
{

Err err = 0;
DmOpenRef dbP;
UInt16* recIndex;
MemHandle recH;
UInt8* recP;
UInt8* smfP;
UInt32 bMidiOffset;
UInt32 dwSmfSize;
SndMidiRecHdrType recHdr;

bMidiOffset = sizeof(SndMidiRecHdrType) +
StrLen(trackName) + 1;

dwSmfSize = MemHandleSize(smfH);

recHdr.signature = sndMidiRecSignature;
recHdr.reserved = 0;
recHdr.bDataOffset = bMidiOffset;

dbP = DmOpenDatabaseByTypeCreator(sysFileTMidi,
sysFileCSystem,

dmModeReadWrite |
dmModeExclusive);

if (!dbP)
return 1;

// Allocate a new record for the midi resource
recIndex = dmMaxRecordIndex;
Palm OS Programmer’s Companion 211



Palm System Features
Sound
recH = DmNewRecord(dbP, &recIndex, dwSmfSize +
bMidiOffset);

if ( !recH )
return 2;

// Lock down the source SMF and target record
and copy the data

smfP = MemHandleLock(smfH);
recP = MemHandleLock(recH);

err = DmWrite(recP, 0, &recHdr, sizeof(recHdr));
if (!err) err = DmStrCopy(recP,

prvFieldOffset(SndMidiRecType,
name), trackName);

if (!err) err = DmWrite(recP, bMidiOffset, smfP,
dwSmfSize);

// Unlock the pointers
MemHandleUnlock(smfH);
MemHandleUnlock(recH);

//Because DmNewRecord marks the new record as
busy,

// we must call DmReleaseRecord before closing
the database

DmReleaseRecord(dbP, recIndex, 1);

DmCloseDatabase(dbP);

return err;
}

Saving References to Standard MIDI Files

To save a reference to a SMF stored in a particular database, save its
record ID and the name of the database in which it is stored. Do not
store the database ID between invocations of your application,
because various events, such as a HotSync, can invalidate database
IDs. Using an invalid database ID can crash your application.
212 Palm OS Programmer’s Companion



Palm System Features
Sound
Retrieving a Standard MIDI File From a Database

Standard MIDI Files (SMFs) are stored as individual records in a
MIDI record database—one SMF per record. Palm OS defines the
database type sysFileTMidi  for MIDI record databases. The
system MIDI database, with type sysFileTMidi  and creator
sysFileCSystem , holds multiple system alarm sounds. In
addition, your applications can create their own private MIDI
databases of type sysFileTMidi  and your own creator.

To obtain a particular SMF, you need to identify the database in
which it resides and the specific database record which holds the
SMF data. The database record itself is always identified by record
ID. The MIDI database in which it resides may be identified by
name or by database ID. If you know the creator of the SMF, you can
use the SndCreateMidiList  utility function to retrieve this
information. Alternatively, you can use the Data Manager record
API functions to iterate through MIDI database records manually in
search of this information.

The SndCreateMidiList  utility function retrieves information
about Standard Midi Files from one or more MIDI databases. This
information is returned as a table of entries. Each entry contains the
name of an SMF; its unique record ID; and the database ID and card
number of the record database in which it resides.

Once you have the appropriate identifiers for the record and the
database in which it resides, you need to open the MIDI database. If
you have identified the database by type and creator, pass the
sysFileTMidi  type and an appropriate creator value to the
DmOpenDatabaseByTypeCreator  function. For example, to
retrieve a SMF from the system MIDI database, pass type
sysFileTMidi  and creator sysFileCSystem . The
DmOpenDatabaseByTypeCreator function returns a reference to
the open database.

If you have identified the database by name, rather than by creator,
you’ll need to discover its database ID in order to open it. The
DmFindDatabase  function returns the database ID for a database
specified by name and card number. You can pass the returned ID to
the DmOpenDatabase  function to open the database and obtain a
reference to it.
Palm OS Programmer’s Companion 213



Palm System Features
Sound
Once you have opened the MIDI database, call
DmFindRecordByID to get the index of the SMF record. To retrieve
the record itself, pass this index value to either of the functions
DmQueryRecord  or DmGetRecord . When you intend to modify
the record, use the DmGetRecord  function—it marks the record as
busy. When you intend to use the record in read-only fashion, use
the DmQueryRecord function —it does not mark the record as busy.
You must lock the handle returned by either of these functions
before making further use of it.

To lock the database record’s handle, pass it to the MemHandleLock
function, which returns a pointer to the locked record holding the
SMF data. You can pass this pointer to the SndPlaySmf function in
the smfP  parameter to play the MIDI file.

When you’ve finished using the record, unlock the pointer to it by
calling the MemPtrUnlock  function. If you’ve used DmGetRecord
to open the record for editing, you must call DmReleaseRecord to
make the record available once again to other callers. If you used
DmQueryRecord to open the record for read-only use, you need
not call DmReleaseRecord .

Finally, close the database by calling the DmCloseDatabase
function.

Sound Preferences Compatibility Information
The sound preferences implementation and API varies slightly
among versions 1.0, 2.0, and 3.X of Palm OS. This section describes
how to use sound preferences correctly for various versions of Palm
OS.

Because versions 2.0 and 3.X of Palm OS provide backward
compatibility with previous sound preference mechanisms,
applications written for an earlier version of the sound preferences
API will get correct sound preference information from newer
versions of Palm OS. However, it is strongly recommended that new
applications use the latest API.
214 Palm OS Programmer’s Companion



Palm System Features
Sound
Using Sound Preferences on All Palm OS Devices

Because the user chooses sound preference settings, your
application should respect them and adhere to their values. Further,
you should always treat sound preferences as read-only values.

At reset time, the sound manager reads stored preference values
and caches them for use at run time. The user interface controls
update both the stored preference values and the sound manager’s
cached values.

The PrefSetPreference  function writes to stored preference
values without affecting cached values. New values are read at the
next system reset. The system-use-only SndSetDefaultVolume
function updates cached values but not stored preferences.
Applications should avoid modifying stored preferences or cached
values in favor of respecting the user’s choices for preferences.

Using Palm OS 1.0 Sound Preferences

To read sound preference values in version 1.0 of Palm OS, call the
PrefGetPreferences function to obtain the data structure shown
in Listing 8.7. This SystemPreferencesTypeV10 structure holds
the current values of all system-wide preferences. You must extract
from this structure the values of the sysSoundLevel and
alarmSoundLevel  fields. These values are the only sound
preference information that Palm OS version 1.0 provides.

Each of these fields holds a value of either slOn (on) or slOff (off).
Your code must interpret the values read from these fields as an
indication of whether those volumes should be on or off, then map
them to appropriate amplitude values to pass to Sound Manager
functions: map the slOn  selector to the sndMaxAmp constant
(defined in SoundMgr.h ) and map the slOff  selector to the value
0 (zero).

Listing 8.7 SystemPreferencesTypeV10 data structure

typedef struct {
UInt16 version;// Version of preference info

// International preferences
CountryType country;// Country the device is in
Palm OS Programmer’s Companion 215



Palm System Features
Sound
DateFormatType dateFormat;// Format to display
date in

DateFormatType longDateFormat;// Format to
display date in

UInt8 weekStartDay;// Sunday or Monday
TimeFormatType timeFormat;// Format to display

time in
NumberFormatType numberFormat;// Format to

display numbers in

// system preferences
UInt8 autoOffDuration;// Time period before

shutting off
SoundLevelTypeV20 sysSoundLevel;//error beeps
SoundLevelTypeV20 alarmSoundLevel;//alarm only
Boolean hideSecretRecords;// True to not display

records with
// their secret bit

attribute set
Boolean deviceLocked; // Device locked until the

system
// password is entered

UInt16sysPrefFlags;// Miscellaneous system pref
flags copied into

 // the global GSysPrefFlags at
boot time.

SysBatteryKind sysBatteryKind;
// The type of

batteries installed.
// This is copied

into the globals
// GSysbatteryKind

at boot time.

} SystemPreferencesTypeV10;

Using Palm OS 2.0 Sound Preferences

Version 2.0 of Palm OS introduces a new API for retrieving
individual preference values from the system. You can pass any of
216 Palm OS Programmer’s Companion



Palm System Features
Sound
the selectors prefSysSoundLevelV20 ,
prefGameSoundLevelV20 , or prefAlarmSoundLevelV20  to
the PrefGetPreference  function to retrieve individual
amplitude preference values for alarm sounds, game sounds, or for
overall (system) sound amplitude. As in Palm OS 1.0, each of these
settings holds values of either slOn  (on) or slOff  (off), as defined
in the Preferences.h file. Your code must interpret the values read
from these fields as an indication of whether those volumes should
be on or off, then map them to appropriate amplitude values to pass
to Sound Manager functions: map the slOn  selector to the
sndMaxAmp constant (defined in SoundMgr.h  file) and map the
slOff  selector to the value 0 (zero).

For a complete listing of selectors you can pass to the
PrefGetPreference  function, see the Preferences.h  file.

Using Palm OS 3.X Sound Preferences

Palm OS version 3.X enhances the resolution of sound preference
settings by providing discrete amplitude levels for games, alarms,
and the system overall. As usual, do not set preferences yourself,
but treat them as read-only values indicating the proper volume
level for your application to use.

Palm OS 3.X defines the new sound amplitude selectors
prefSysSoundVolume , prefGameSoundVolume , and
prefAlarmSoundVolume for use with the PrefGetPreference
function. The values this function returns for these selectors are
actual amplitude settings that may be passed directly to Sound
Manager functions.

NOTE: The amplitude selectors used in previous versions of
Palm OS (all ending with the Level  suffix, such as
prefGameSoundLevel ) are obsoleted in version 3.0 of Palm OS
and replaced by new selectors. The old selectors remain available
in Palm OS 3.X to ensure backward compatibility and are suffixed
V20 (for example, prefGameSoundLevelV20 ).
Palm OS Programmer’s Companion 217



Palm System Features
System Boot and Reset
Ensuring Sound Preferences Compatibility

For greatest compatibility with multiple versions of the sound
preferences mechanism, your application should condition its
sound preference code according to the version of Palm OS on
which it is running. See “The System Version Feature” for more
information.

When your application is launched, it should retrieve the system
version number and save the results in its global variables (or
equivalent structure) for use elsewhere. If the major version number
is 3 (three) or greater, then use the 3.0 mechanism for obtaining
sound amplitude preferences, since this reflects the user’s selection
most accurately. If the major version number is 2 (two), then use the
2.0 mechanism described in “Using Palm OS 2.0 Sound
Preferences.” If it is 1 (one), then use the 1.0 mechanism described in
“Using Palm OS 1.0 Sound Preferences.”

Avoid calling new APIs (including new selectors) when running on
older versions of Palm OS that do not implement them. In
particular, note that violating any of the following conditions will
cause your application to crash:

• Do not call either of the SndPlaySmf  or
SndCreateMidiList  functions on versions of Palm OS
prior to 3.0.

• Do not pass any selector other than
sndCmdFreqDurationAmp  to the SndDoCmd function on
versions of Palm OS prior to 3.0.

System Boot and Reset
Any reset is normally performed by sticking a bent-open paper clip
or a large embroidery needle into the small hole in the back of the
device. This hole, known as the “reset switch” is above and to the
right of the serial number sticker (on Palm III devices). Depending
on additional keys held down, the reset behavior varies, as follows:

Soft Reset
A soft reset clears all of the dynamic heap (Heap 0, Card 0). The
storage heaps remain untouched. The operating system restarts
218 Palm OS Programmer’s Companion



Palm System Features
System Boot and Reset
from scratch with a new stack, new global variables, restarted
drivers, and a reset communication port. All applications on the
device receive a sysAppLaunchCmdSystemReset  launch code.

Soft Reset + Up Arrow
Holding the up-arrow down while pressing the reset switch with a
paper clip causes the same soft reset logic with the following two
exceptions:

• The sysAppLaunchCmdSystemReset  launch code is not
sent to applications. This is useful if there is an application on
the device that crashes upon receiving this launch code (not
uncommon) and therefore prevents the system from booting.

• The OS won’t load any system patches during startup. This is
useful if you have to delete or replace a system patch
database. If the system patches are loaded and therefore
open, they cannot be replaced or deleted from the system.

Hard Reset
A hard reset is performed by pressing the reset switch with a paper
clip while holding down the power key. This has all the effects of the
soft reset. In addition, the storage heaps are erased. As a result, all
programs, data, patches, user information, etc. are lost. A
confirmation message is displayed asking the user to confirm the
deletion of all data.

The sysAppLaunchCmdSystemReset  launch code is sent to the
applications at this time. If the user selected the “Delete all data”
option, the digitizer calibration screen comes up first. The default
databases for the four main applications is copied out of the ROM.

If you hold down the up arrow key when the “Delete all data”
message is displayed, and then press the other four application
buttons while still holding the up arrow key, the system is booted
without reading the default databases for the four main applications
out of ROM.
Palm OS Programmer’s Companion 219



Palm System Features
Hardware Interaction
System Reset Calls
The system manager provides support for booting the Palm OS
device. It calls SysReset  to reset the device. This call does a soft
reset and has the same effect as pressing the reset switch on the unit.
Normally applications should not use this call.

SysReset  is used, for example, by the Sync application. When the
user copies an extension onto the Palm OS device, the Sync
application automatically resets the device after the sync is
completed to allow the extension to install itself.

The SysColdBoot  call is similar, but even more dangerous. It
performs a hard reset that clears all user storage RAM on the device,
destroying all user data.

Hardware Interaction
Palm OS differs from a traditional desktop system in that it’s never
really turned off. Power is constantly supplied to essential
subsystems and the on/off key is merely a way of bringing the
device in or out of low-power mode. The obvious effect of pressing
the on/off key is that the LCD turns on or off. When the user presses
the power key to turn the device off, the LCD is disabled, which
makes it appear as if power to the entire unit is turned off. In fact,
the memory system, real-time clock, and the interrupt generation
circuitry are still running, though they are consuming little current.

This section looks at Palm OS power management, discussing the
following topics:

• Palm OS Power Modes

• Guidelines for Application Developers

• Power Management Calls

Palm OS Power Modes
To minimize power consumption, the operating system
dynamically switches between three different modes of operation:
sleep mode, doze mode, and running mode. The system manager
controls transitions between different power modes and provides
an API for controlling some aspects of the power management.
220 Palm OS Programmer’s Companion



Palm System Features
Hardware Interaction
• In sleep mode, the device looks like it’s turned off: the
display is blank, the digitizer is inactive, and the main clock
is stopped. The only circuits still active are the real-time clock
and interrupt generation circuitry.

The device enters this mode when there is no user activity for
a number of minutes or when the user presses the off button.
The device comes out of sleep mode only when there is an
interrupt, for example, when the user presses a button.

To enter sleep mode, the system puts as many peripherals as
possible into low-power mode and sets up the hardware so
that an interrupt from any hard key or the real-time clock
wakes up the system. When the system gets one of these
interrupts while in sleep mode, it quickly checks that the
battery is strong enough to complete the wake-up and then
takes each of the peripherals, for example, the LCD, serial
port, and timers, out of low-power mode.

• In doze mode, the main clock is running, the device appears
to be turned on, the LCD is on, and the processor’s clock is
running but it’s not executing instructions (that is, it’s
halted). When the processor receives an interrupt, it comes
out of halt and starts processing the interrupt.

The device enters this mode whenever it’s on but has no user
input to process.

The system can come out of doze mode much faster than it
can come out of sleep mode since none of the peripherals
need to be woken up. In fact, it takes no longer to come out of
doze mode than to process an interrupt. Usually, when the
system appears on, it is actually in doze mode and goes into
running mode only for short periods of time to process an
interrupt or respond to user input like a pen tap or key press.

• In running mode, the processor is actually executing
instructions.

The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second), then it immediately
Palm OS Programmer’s Companion 221



Palm System Features
Hardware Interaction
reenters doze mode. A typical application puts the system
into running mode only about 5% of the time.

To maximize battery life, the processor on the Palm OS platform
device is kept out of running mode as much as possible. Any
interrupt generated on the device must therefore be capable of
“waking” up the processor. The processor can receive interrupts
from the serial port, the hard buttons on the case, the button on the
cradle, the programmable timer, the memory module slot, the real-
time clock (for alarms), the low-battery detector, and any built-in
peripherals such as a pager or modem.

Guidelines for Application Developers
Normally, applications don’t need to be aware of power
management except for a few simple guidelines. When an
application calls EvtGetEvent to ask the system for the next event
to process, the system automatically puts itself into doze mode until
there is an event to process. As long as an application uses
EvtGetEvent , power management occurs automatically. If there
has been no user input for the amount of time determined by the
current setting of the auto-off preference, the system automatically
enters sleep mode without intervention from the application.

Applications should avoid providing their own delay loops.
Instead, they should use SysTaskDelay , which puts the system
into doze mode during the delay to conserve as much power as
possible. If an application needs to perform periodic work, it can
pass a time out to EvtGetEvent ; this forces the unit to wake up out
of doze mode and to return to the application when the time out
expires, even if there is no event to process. Using these mechanisms
provides the longest possible battery life.

Power Management Calls
The system calls SysSleep  to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSetAutoOffTime routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
222 Palm OS Programmer’s Companion



Palm System Features
The Microkernel
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSetAutoOffTime  with a time-out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBatteryInfo  routine. This call returns
information about the battery, including the current battery voltage
in hundredths of a volt, the warning thresholds for the low-battery
alerts, the battery type, and whether external power is applied to the
unit. This call can also change the battery warning thresholds and
battery type.

The Microkernel
Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is
provided mainly for internal use by the system software or for
certain special purpose applications.

In this version of the Palm OS, there is only one user interface
application running at a time. The User Interface Application Shell
(UIAS) is responsible for managing the current user-interface
application. The UIAS launches the current user-interface
application as a subroutine and doesn’t get control back until that
application quits. When control returns to the UIAS, the UIAS
immediately launches the next application as another subroutine.
See “Power Management Calls” for more information.

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a
second task to handle the serial communication with the desktop.
The Sync application creates a second task dedicated to the serial
communication and gives this task a lower priority than the main
user-interface task. The result is optimal performance over the serial
port without a delay in response to the user-interface controls.
Palm OS Programmer’s Companion 223



Palm System Features
Retrieving the ROM Serial Number
Normally, there is no user interaction during a sync, so that the
serial communication task gets all of the processor’s time. However,
if the user does tap on the screen, for example, to cancel the sync,
the user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically
poll for user input during the serial communication, which would
hamper performance and user-interface response time.

NOTE: Only system software can launch a separate task. The
multi-tasking API is not available to developer applications.

Retrieving the ROM Serial Number
Some Palm devices, beginning with the Palm III product, hold a 12-
digit serial number that identifies the device uniquely. (Earlier
devices do not have this identifier.) The serial number is held in a
displayable text buffer with no null terminator. The user can view
the serial number in the Application Launcher application. (The
pop-up version of the Launcher does not display the serial number.)
The Application Launcher also displays to the user a checksum digit
that you can use to validate user entry of the serial number.

To retrieve the ROM serial number programmatically, pass the
sysROMTokenSnum selector to the SysGetROMToken function. If
the SysGetROMToken function returns an error, or if the returned
pointer to the buffer is NULL, or if the first byte of the text buffer is
0xFF, then no serial number is available.

The DrawSerialNumOrMessage  function shown in Listing 8.8
retrieves the ROM serial number, calculates the checksum, and
draws both on the screen at a specified location. If the device has no
serial number, this function draws a message you specify. This
function accepts as its input a pair of coordinates at which it draws
output, and a pointer to the message it draws when a serial number
is not available.
224 Palm OS Programmer’s Companion



Palm System Features
Retrieving the ROM Serial Number
Listing 8.8 DrawSerialNumOrMessage

static void DrawSerialNumOrMessage(Int16 x,
Int16 y, Char* noNumberMessage)
{
    Char* bufP;
    UInt16* bufLen;
    Err retval;
    Int16   count;
    UInt8    checkSum;
    Char    checksumStr[2];

// holds the dash and the checksum digit

    retval = SysGetROMToken (0, sysROMTokenSnum,
(UInt8**) &bufP,

&bufLen);
    if ((!retval) && (bufP) && ((UInt8) *bufP !=
0xFF)) {

// there's a valid serial number!
// Calculate the checksum:  Start with zero,

add each digit,
// then rotate the result one bit to the left

and repeat.
        checkSum = 0;
        for (count=0; count<bufLen; count++) {
            checkSum += bufP[count];
            checkSum = (checkSum<<1) | ((checkSum
& 0x80) >> 7);
            }

// Add the two hex digits (nibbles) together,
+2

// (range: 2 - 31 ==> 2-9, A-W)
// By adding 2 to the result before converting

to ascii,
// we eliminate the numbers 0 and 1, which can

be
// difficult to distinguish from the letters O

and I.
checkSum = ((checkSum>>4) & 0x0F) + (checkSum

& 0x0F) + 2;
Palm OS Programmer’s Companion 225



Palm System Features
Time
// draw the serial number and find out how
wide it was

WinDrawChars(bufP, bufLen, x, y);
x += FntCharsWidth(bufP, bufLen);

// draw the dash and the checksum digit right
after it

checksumStr[0] = '-';
checksumStr[1] =

((checkSum < 10) ? (checkSum
+'0'):(checkSum -10 +'A'));

WinDrawChars (checksumStr, 2, x, y);
}

    else // there's no serial number
// draw a status message if the caller

provided one
if (noNumberMessage)

WinDrawChars(noNumberMessage,
StrLen(noNumberMessage),x, y);
}

Time
The Palm OS platform device has a real-time clock and
programmable timer as part of the 68328 processor. The real-time
clock maintains the current time even when the system is in sleep
mode (turned off). It’s capable of generating an interrupt to wake
the device when an alarm is set by the user. The programmable
timer is used to generate the system tick count interrupts (100
times/second) while the processor is in doze or running mode. The
system tick interrupts are required for periodic activity such as
polling the digitizer for user input, key debouncing, etc.

The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing
resources on the Palm OS device.

• The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.
226 Palm OS Programmer’s Companion



Palm System Features
Time
• The 0.01-second timer, also referred to as the system ticks,
can be used for finer timing tasks. This timer is not updated
when the unit is in sleep mode and is reset to 0 each time the
unit resets.

The basic time-manager API provides support for setting and
getting the real-time clock in seconds and for getting the current
system ticks value (but not for setting it). The system manager
provides more advanced functionality for setting up a timer task
that executes periodically or in a given number of system ticks.

This section discusses the following topics:

• Using Real-Time Clock Functions

• Using System Ticks Functions

Using Real-Time Clock Functions
The real-time clock functions of the time manager include
TimSetSeconds  and TimGetSeconds . Real time on the Palm OS
device is measured in seconds from midnight, Jan. 1, 1904. Call
TimSecondsToDateTime  and TimDateTimeToSeconds  to
convert between seconds and a structure specifying year, month,
day, hour, minute, and second.

Using System Ticks Functions
The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

• 100 times per second when running on the Palm OS device

• 60 times per second when running on the Macintosh under
the Simulator

For tick-based timing purposes, applications should use the macro
SysTicksPerSecond , which is conditionally compiled for
different platforms. Use the function TimGetTicks  to read the
current tick count.

Although the TimGetTicks  function could be used in a loop to
implement a delay, it is recommended that applications use the
SysTaskDelay  function instead. The SysTaskDelay  function
automatically puts the unit into low-power mode during the delay.
Using TimGetTicks  in a loop consumes much more current.
Palm OS Programmer’s Companion 227



Palm System Features
Floating-Point
Floating-Point
Palm OS 1.0 provided 16-bit floating point arithmetic. Instead of
using standard mathematical symbols, you called functions like
FplAdd , FplSub , and so on.

Palm OS 2.0 and later implements floating point arithmetic
differently than Palm OS 1.0 did. The floating-point library in OS
versions 2.0 and later provides 32-bit and 64-bit floating point
arithmetic.

Using Floating Point Arithmetic
To take advantage of the floating-point library, applications can now
use the mathematical symbols + – * /instead of using functions like
FplAdd , FplSub , etc.

When compiling the application, you have to link in the floating
point library under certain circumstances. Choose from one of these
options:

• Simulator application or application for 1.0 device — link in
the floating point library explicitly.

This library adds approximately 8KB to the size of your prc
file. The library provides 32-bit and 64-bit floating-point
arithmetic. The original Palm OS Fpl  functions provided
only 16-bit floating-point arithmetic. Linking in the library
explicitly won’t cause problems when you compile for a 2.0
or later device.

• 2.0 or later Palm OS device—It’s not necessary to link in the
library.

The compiler generates trap calls to equivalent floating-point
functionality in the system ROM.

There are control panel settings in the IDE which let you select the
appropriate floating-point model.

Floating-point functionality is identical in either method.
228 Palm OS Programmer’s Companion



Palm System Features
Summary of System Features
Using 1.0 Floating-Point Functionality
The original Fpl calls (documented in the chapter “Float Manager”
in the Palm OS SDK Reference) are still available. They may be useful
for applications that don’t need high precision, don’t want to incur
the size penalty of the float library, and want to run on 1.0 devices
only. To get 1.0 behavior, use the 1.0 calls (FplAdd , etc.) and don’t
link in the library.

Summary of System Features
Alarm Manager Functions

AlmSetAlarm
AlmSetProcAlarm

AlmGetAlarm
AlmGetProcAlarm

Feature Manager Functions

FtrGet
FtrSet
FtrPtrNew
FtrPtrResize

FtrGetByIndex
FtrUnregister
FtrPtrFree

Notification Manager Functions

SysNotifyRegister
SysNotifyBroadcast

SysNotifyUnregister
SysNotifyBroadcastDeferred

Sound Manager Functions

SndCreateMidiList
SndGetDefaultVolume
SndPlaySystemSound

SndDoCmd
SndPlaySmf
SndPlaySmfResource
Palm OS Programmer’s Companion 229



Palm System Features
Summary of System Features
System Manager Functions

Launching Applications

SysAppLaunch
SysBroadcastActionCode

SysUIAppSwitch

System Dialogs

SysGraffitiReferenceDialog
SysKeyboardDialogV10

SysKeyboardDialog

Power Management

SysBatteryInfo
SysSetAutoOffTime

SysBatteryInfoV20
SysTaskDelay

System Management

SysLibFind
SysRandom
SysGremlins

SysLibLoad
SysReset

Working With Strings and Resources

SysBinarySearch
SysQSort
SysCreatePanelList
SysFormPointerArrayToStrings

SysInsertionSort
SysCopyStringResource
SysStringByIndex

Database Support

SysCreateDataBaseList SysCurAppDatabase

Error Handling

SysErrString

Event Handling

SysHandleEvent

System Information

SysGetOSVersionString
SysGetROMToken

SysGetStackInfo
SysTicksPerSecond
230 Palm OS Programmer’s Companion



Palm System Features
Summary of System Features
Time Manager Functions

Allowing User to Change Date and Time

DayHandleEvent
SelectDay

SelectTimeV33
SelectDayV10

Changing the Date

DateAdjust
TimSetSeconds

TimAdjust

Converting to Date Format

DateDaysToDate
TimSecondsToDateTime

DateSecondsToDate

Converting Dates to Other Formats

DateToAscii
DateToDays
TimGetSeconds
TimGetTicks

TimeToAscii
DateToDOWDMFormat
TimDateTimeToSeconds

Date Information

DayOfMonth
DaysInMonth

DayOfWeek

Float Manager Functions

FplAdd
FplBase10Info
FplFloatToLong
FplFree
FplInit
FplMul

FplAToF
FplDiv
FplFloatToULong
FplFToA
FplLongToFloat
FplSub
Palm OS Programmer’s Companion 231





9
Serial
Communication
The Palm OS® serial communications software provides high-
performance serial communications capabilities, including byte-
level serial I/O, best-effort packet-based I/O with CRC-16, reliable
data transport with retries and acknowledgments, connection
management, and modem dialing capabilities.

This chapter helps you understand the different parts of the serial
communications system and explains how to use them, discussing
these topics:

• Serial Hardware describes the serial port hardware.

• Byte Ordering briefly explains the byte order used for all
data.

• Serial Communications Architecture Hierarchy provides an
overview of the hierarchy, including an illustration.

• The Serial Manager and the The New Serial Manager are
responsible for byte-level serial I/O and control of the RS232
signals.

• The Connection Manager allows other applications to access,
add, and delete connection profiles contained in the
Connection preferences panel.

• The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

• The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

Serial Hardware
The Palm OS® platform device serial port is used for implementing
desktop PC connectivity or other external communication. The
serial communication is fully interrupt-driven for receiving data.
Palm OS Programmer’s Companion 233



Serial  Communicat ion
Byte Ordering
Currently, interrupt-driven transmission of data is not implemented
in software, but the hardware does support it. Five external signals
are used for this communication:

• SG (signal ground)

• TxD (transmit data)

• RxD (receive data)

• CTS (clear to send)

• RTS (request to send)

The Palm OS platform device has an external connector that
provides:

• Five serial communication signals

• General-purpose output

• General-purpose input

• Cradle button input

Palm, Inc. publishes information designed to assist hardware
developers in creating devices to interface with the serial
communications port on Palm OS platform products. You can
obtain this information by joining the Solution Provider Program
and enrolling in the Serial Port & Modem Casing Program. For more
information about this program and the serial port hardware, see
the Palm developer web page at:
http://www.palm.com/devzone/hw.html .

Byte Ordering
By convention, all data coming from and going to the Palm OS
device use Motorola byte ordering. That is, data of compound types
such as UInt16 (2 bytes) and UInt32 (4 bytes), as well as their
integral counterparts, are packaged with the most-significant byte at
the lowest address. This contrasts with Intel byte ordering.
234 Palm OS Programmer’s Companion

http://www.palm.com/devzone/hw.html


Serial  Communicat ion
Serial Communications Architecture Hierarchy
Serial Communications Architecture Hierarchy
The serial communications software has multiple layers. Higher
layers depend on more primitive functionality provided by lower
layers. Applications can use functionality of all layers. The software
consists of the following layers, described in more detail below:

• The serial manager, at the lowest layer, deals with the Palm
device serial port and control of the RS232 signals, providing
byte-level serial I/O. See The Serial Manager.

• The modem manager provides modem dialing capabilities.

• The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See The Serial Link Protocol.

• The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol
featuring variable-size block transfers with robust error
checking and automatic retries. Applications don’t need
access to this part of the system.

• The Connection Management Protocol (CMP) provides
connection-establishment capabilities featuring baud rate
arbitration and exchange of communications software
version numbers.

• The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between
desktop (PC, Macintosh, etc.) and Palm OS applications,
database backup, installation of code patches, extensions,
applications, and other databases, as well as Remote
Interapplication Communication (RIAC) and Remote
Procedure Calls (RPC).

Figure 9.1 illustrates the communications layers.
Palm OS Programmer’s Companion 235



Serial  Communicat ion
The Serial Manager
Figure 9.1 Palm OS Serial Communications Architecture

The Serial Manager
The Palm OS serial manager is responsible for byte-level serial I/O
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very
efficient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present
implementation, the serial manager uses the polling mode to send
data.

Modem
Manager

Connection
management

Protocol (CMP)

Desktop Link
Protocol

Packet Assembly/
Disassembly Protocol

Serial Link
Protocol (SLP)

Serial Manager

Hardware

Modem
(optional)

Serial Port
236 Palm OS Programmer’s Companion



Serial  Communicat ion
The Serial Manager
Using the Serial Manager
Before using the serial manager, call SysLibFind , passing
“Serial Library”  for the library name to get the serial library
reference number. This reference number is used with all
subsequent serial manager calls. The system software automatically
installs the serial library during system initialization.

To open the serial port, call SerOpen , passing the serial library
reference number (returned by SysLibFind ), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
serErrAlreadyOpen  indicates that the port was successfully
opened.

If the serial port is already open when SerOpen is called, the port’s
open count is incremented and an error code of
serErrAlreadyOpen  is returned. This ability to open the serial
port multiple times allows cooperating tasks to share the serial port.

All other applications must refrain from sharing the serial port and
close it by calling SerClose  when serErrAlreadyOpen  is
returned. Error codes other than 0 (zero) or serErrAlreadyOpen
indicate failure. The application must open the serial port before
making other serial manager calls.

To close the serial port, call SerClose . Every successful call to
SerOpen  must eventually be paired with a call to SerClose .
Because an open serial port consumes more energy from the
device’s batteries, it is essential not to keep the port open any longer
than necessary.

To change serial port settings, such as the baud rate, CTS timeout,
number of data and stop bits, parity options, and handshaking
options, call SerSetSettings . For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call SerGetStatus .

To retrieve the current line error status, call SerGetStatus , which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break
detection, and handshake errors.

To reset the serial port error status, call SerClearErr , which resets
the serial port’s line error status. Other serial manager functions,
Palm OS Programmer’s Companion 237



Serial  Communicat ion
The Serial Manager
such as SerReceive , immediately return with the error code
serErrLineErr  if any line errors are pending. Applications
should therefore check the result of serial manager function calls
and call SerClearErr  if line error(s) occurred.

To send a stream of bytes, call SerSend . In the present
implementation, SerSend blocks until all data are transferred to the
UART or a timeout error (if CTS handshaking is enabled) occurs. If
your software needs to detect when all data has been transmitted,
consider calling SerSendWait .

NOTE: Both SerSend  and SerReceive  were enhanced in
version 2.0 of the system. See the function descriptions for more
information. The older versions are still available as SerSend10
and SerReceive10.

To wait until all data queued up for transmission has been
transmitted, call SerSendWait . SerSendWait  blocks until all
pending data is transmitted or a CTS timeout error occurs (if CTS
handshaking is enabled).

To flush all bytes from the transmission queue, call SerSendFlush .
This routine discards any data not yet transferred to the UART for
transmission.

To receive a stream of bytes from the serial port, call SerReceive ,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data have been
received or an error occurs.

To read bytes already in the receive queue, call SerReceiveCheck
(see below) to get the number of bytes presently in the receive queue
and then call SerReceive , specifying the number of bytes desired.
Because SerReceive  returns immediately without any data if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr .

To wait for a specific number of bytes to be queued up in the receive
queue, call SerReceiveWait , passing the desired number of bytes
and an interbyte timeout. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive
238 Palm OS Programmer’s Companion



Serial  Communicat ion
The Serial Manager
queue size. The default queue size is 512 bytes. Because this call
returns immediately if line errors are pending, applications have to
call SerClearErr  to detect any line errors. See also
SerReceiveCheck  and SerSetReceiveBuffer .

To check how many bytes are presently in the receive queue, call
SerReceiveCheck .

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call SerReceiveFlush, specifying the
interbyte timeout. This call blocks until a time out occurs waiting for
the next byte to arrive.

To replace the default receive queue, call SerSetReceiveBuffer ,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer , passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

To avoid having the system go to sleep while it’s waiting to receive
data, an application should call EvtResetAutoOffTimer periodically.
For example, the serial link manager automatically calls
EvtResetAutoOffTimer each time a new packet is received. Note
that this facility is not part of the serial manager but part of the
event manager. For more information, see “Auto-Off Control” on
page 74.

To perform a control function, applications can call SerControl .
This function performs one of the control operations specified by
SerCtlEnum , whose elements are described in Table 9.1.

Table 9.1 SerCtlEnum Elements

Element Description

serCtlFirstReserved  = 0 Reserve 0

serCtlStartBreak Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to
generate a value BREAK!
valueP = 0; valueLenP = 0

serCtlStopBreak Turn RS232 break signal off:
valueP = 0; valueLenP = 0
Palm OS Programmer’s Companion 239



Serial  Communicat ion
The New Serial Manager
The New Serial Manager
The new serial manager is capable of managing multiple serial
connections within a Palm device.

This section describes the new serial manager and the new
capability to write serial drivers that it can use.

serCtlBreakStatus Get RS232 break signal status (on or off):
valueP  = pointer to UInt16 for returning status

(0 = off, !0 = on)

*valueLenP = sizeof(UInt16)

serCtlStartLocalLoopback Start local loopback test;
valueP = 0, valueLenP = 0

serCtlStopLocalLoopback Stop local loopback test
valueP = 0, valueLenP = 0

serCtlMaxBaud valueP = pointer to UInt32  for returned baud
*valueLenP = sizeof(UInt32)

serCtlHandshakeThreshold Retrieve HW handshake threshold; this is the
maximum baud rate that does not require
hardware handshaking
valueP  = pointer to UInt32 for returned baud
*valueLenP = sizeof(UInt32)

serCtlEmuSetBlockingHook Set a blocking hook routine.

WARNING! For use with the Simulator on Mac
OS only. NOT SUPPORTED ON THE PALM
DEVICE.

valueP = pointer to SerCallbackEntryType
*valueLenP=sizeof(SerCallbackEntryTyp
e)
Returns the old settings in the first argument.

Table 9.1 SerCtlEnum Elements (continued)

Element Description
240 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
The new serial manager is the preferred serial manager API and the
Palm OS will eventually phase out support for the original serial
manager API.

NOTE: The new serial manager is not available on all Palm
devices. It is available by flash ROM update on Palm III™ and
upgraded PalmPilot™ devices and some later devices. Before
making any new serial manager calls, you must ensure that it is
present.

Checking for the New Serial Manager
Because not all Palm devices will (or even can) have the new serial
manager installed, it’s important that you check for its existence
before making any new serial manager calls. You can check by
calling FtrGet  as follows:

err = FtrGet(sysFileCSerialMgr,
sysFtrNewSerialPresent, &value);

If the new serial manager is installed, the value  parameter will be
non-zero and the returned error should also be zero (for no error).

If the new serial manager is installed, it replaces the original serial
manager. However, it includes a compatibility layer so that
applications that use the original serial manager functions will
continue to operate as expected. The compatibility layer simply
translates the original serial manager calls into equivalent new
serial manager functions.

If you are writing new application code, best performance is
achieved by using the new serial library functions directly,
assuming the new serial manager is installed on the unit on which
your code is executing.

What's New About the New Serial Manager
The main difference between the new serial manager and previous
versions is that the new serial manager supports multiple physical
serial hardware devices and virtual serial devices, the detailed
operation of which is abstracted from the main serial management
Palm OS Programmer’s Companion 241



Serial  Communicat ion
The New Serial Manager
code. Physical serial drivers manage communication with the
hardware as needed, and virtual drivers manage blocks of data to
be sent to some sort of block-based serial code.

In addition to this big change, a few new functions have been added
and there are widespread, minor changes to data structures and API
details.

About the New Serial Manager
The new serial manager manages multiple serial devices with
minimal duplication of hardware drivers and data structures. In
older Palm systems, the serial library managed any and all
connections to the serial hardware in the 68328 (Dragonball)
processor, which was the only serial device in the system. Newer
systems contain additional serial devices, such as an IR port.

The figure below shows the layering of communication software
with the new serial manager and hardware drivers.

Figure 9.2 Serial Communications Architecture with New
Serial Manager

Applications

Libraries/system code

New Serial Manager API

68328
Serial
Driver

16C650A
Serial
Driver

Other
UART

Devices
Virtual
Drivers

Other Serial
Comm Devices
242 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
The new serial manager maintains a database of installed hardware
and currently open connections. Applications, libraries, or other
serial communication tasks open different pieces of serial hardware
by specifying a logical port number or a four-character code
identifying the exact piece of serial hardware that a task wishes to
open a connection with. The new serial manager then performs the
proper actions on the hardware via small hardware drivers that are
opened dynamically when the port is needed. One hardware driver
is needed for each serial communication hardware device available
to the Palm unit.

At system restart, the new serial manager searches for all serial
drivers on the Palm device. Serial drivers are independent .prc files
with a code resource and a version resource and are of type ‘sdrv’ or
‘vdrv’. Once a driver is found, it is asked to locate its associated
hardware and provide information on the capabilities of that
hardware. This is done for each driver found and the new serial
manager always maintains a list of hardware currently on the
device.

Once a port is opened, the new serial manager allocates a structure
for maintaining the current information and settings of the
particular port. The task or application that opens the port is
returned a port ID and must supply the port ID to refer to this port
when other new serial manager functions are called.

Upon closing the port, the new serial manager deallocates the open
port structure and unlocks the driver code resource to prevent
memory fragmentation.

Note that applications can use the connection manager to obtain the
proper port ID and other serial port parameters that the user has
stored in connection profiles for different connection types. For
more information, see the section “The Connection Manager” on
page 254.

Using the New Serial Manager
The new serial manager is installed when the device is booted.
Upon opening a new serial manager connection, the calling
application receives a unique ID that must be used to refer to this
specific connection for all subsequent calls to the new serial
manager.
Palm OS Programmer’s Companion 243



Serial  Communicat ion
The New Serial Manager
Opening a Connection

Opening a serial connection requires that the application enable the
serial hardware by calling the SrmOpen function and specifying the
port ID (logical number or port name) and the initial baud rate of
the UART.

The SrmOpen call returns a unique port ID for the open port. This
port ID is required to perform any other new serial manager
functions. If the returned port ID is NULL or an error is returned by
the SrmOpen function, the returned port ID should be considered
invalid. Once the SrmOpencall is made successfully, it indicates that
the new serial manager has successfully allocated internal structures
to maintain the port and has successfully loaded the serial driver for
this port.

A port may be opened with either a foreground connection
(SrmOpen) or background connection (SrmOpenBackground ). A
foreground connection makes an active connection to the port and
controls usage of the port until the connection is closed. A
background connection opens the port but relinquishes control to
any other task requesting a foreground connection. Background
connections are provided to support tasks (such as a keyboard
driver) that want to use a serial device to receive data only when no
other task is using the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

Specifying the portID Parameter

With the new serial manager, ports must be specified using one of
the following methods:

• Logical ports

These ports are hardware independent. The OS will map
them to the correct physical port. It is better to use logical
244 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
ports instead of the physical ports described below. The
logical ports are:

$8000 – Cradle Port, RS-232 serial

$8001 – IR Port (This is a raw IrDA port with no protocol
support)

$800n – reserved for future types of ports

• Physical ports

These are 4-character constants ('u xxx ' ) that reference the
physical hardware of the device. It is usually not a good idea
to use these ports because the hardware they reference may
not exist on a particular device.

'u328' specifies the cradle port using the 68328 UART. This
port can be switched between RS232 and raw IrDA mode
using the SerControl  call.

'u650'  specifies the IR port on the upgrade card for Palm
Personal or Palm Professional devices. This will give you a
raw IR port like port $8001, but it only exists on devices that
have the upgrade card.

• Virtual ports

These ports are not tied to specific hardware; they simulate a
hardware interface.

'ircm'  specifies the IRComm virtual port. This gives you a
virtual serial cable over an IrDA link using the IrComm
Protocol. It can only be used to talk to another IrComm
device.

Note that other 4-character codes for the physical and virtual ports
will be added in the future. Also note that the port IDs are 4-
character constants, not strings. Therefore, they are enclosed in
single quotes (' '), not double quotes (" ").

Closing a Connection

Once an application is finished with the serial port, it must close it
using the SrmClose  function. If SrmClose  returns no error, it
indicates that the new serial manager has successfully closed the
Palm OS Programmer’s Companion 245



Serial  Communicat ion
The New Serial Manager
driver and deallocated the data structures used for maintaining the
port.

Sending and Receiving Data

Sending data is performed synchronously (for example, the process
of writing bytes to the serial hardware’s transmit FIFO). To send
data, the application only needs to have an open connection with a
port that has been configured properly and then specify a buffer to
send. The larger the buffer to send, the longer the send function
operates before returning to the calling application. The SrmSend
function returns the actual number of bytes that were sent.

The SrmSendCheck function can be used to check and determine if
the FIFO is empty. The SrmSendWait  function can be used to wait
for the UART to send the contents of its FIFO. The SrmSendFlush
function can be used to flush remaining bytes in the FIFO that have
not been sent.

Receiving data is a more involved process because it depends on the
receiving application actually listening for data from the port. The
SrmReceiveWait  function allows the application to periodically
check the serial port to see if data has been received. In this function,
you specify a number of bytes to wait for and a timeout value (in
ticks). When SrmReceiveWait  returns, you can call SrmReceive
to receive the data.

Applications should not loop indefinitely on the
SrmReceiveCheck  and SrmReceiveWait  functions, waiting for
serial data to arrive on the port, without allowing the Palm OS to
obtain time to execute other tasks running in the same thread (by
calling EvtGetEvent  and SysHandleEvent ). Virtual devices
often run in the same thread as applications and this can prevent
virtual devices and other serial related code from properly handling
received data.

Receive Buffer Handling

Functions are provided to support directly changing or accessing
the new serial manager’s receive queue. This allows substitution of
a larger receive buffer to replace the 512-byte default buffer and
allows fast access to this buffer to reduce buffer copying. These
246 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
functions include SrmSetReceiveBuffer ,
SrmReceiveWindowOpen , and SrmReceiveWindowClose .

Receive Data Notification

The SrmSetWakeupHandler  and SrmPrimeWakeupHandler
functions are used to install a notification function
(WakeupHandlerProc ) that gets called after some number of bytes
are received by the new serial manager’s interrupt function.

Because wakeup handlers are called during interrupt time, they
cannot call any Palm OS system functions that may block the system
in any way. Wakeup handlers should also be very short so as to
reduce interrupt latency.

Obtaining Information about Serial Hardware

The SrmGetDeviceCount and SrmGetDeviceInfo functions can
be used by applications to obtain information about all serial
devices currently available to the OS. Applications can obtain the
number of available serial hardware devices and then get
information for those devices by iterating through the list using the
SrmGetDeviceInfo  call, until an error is returned.

The SrmGetStatus  function can be used to get status information
about the current hardware and return line errors. Typically,
SrmGetStatus  is called to retrieve the line errors for the port if
some of the send and receive functions return a serErrLineErr
error code. SrmClearErr  clears line errors.

Handling Custom Operations

The new serial manager handles custom operations via the
SrmControl  function. To extend this functionality to the serial
drivers, an additional set of control functions has been added (see
the SdrvControl and VdrvControl functions). These are unique
to the serial driver and should be called only by the new serial
manager itself. This allows functions that access the hardware
directly to go through the same switching mechanism in the driver
for both public and private control function operation codes.
Palm OS Programmer’s Companion 247



Serial  Communicat ion
The New Serial Manager
New Serial Manager Example
The example code in this section shows how to receive (Listing 9.1)
large blocks of data using the new serial manager.

Listing 9.1 Receiving Data Using the New Serial Manager

#include <Pilot.h> // all the system toolbox
headers
#include <SerialMgr.h>
#define k2KBytes 2048
/
**************************************************
**********
*
* FUNCTION: RcvSerialData
*
* DESCRIPTION: An example of how to receive a
large chunk of data
* from the Serial Manager. This function is useful
if the app
* knows it must receive all this data before
moving on. The
* YourDrainEventQueue() function is a chance for
the application
* to call EvtGetEvent and handle other application
events.
* Receiving data whenever it's available during
idle events
* might be done differently than this sample.
*
* PARAMETERS:
* thePort -> valid portID for an open serial port.
* rcvDataP -> pointer to a buffer to put the
received data.
* bufSize <-> pointer to the size of rcvBuffer and
returns
*   the number of bytes read.
*

248 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
**************************************************
***********/
Err RcvSerialData(UInt16 thePort, UInt8 *rcvDataP,
UInt32 *bufSizeP)
{
UInt32 bytesLeft, maxRcvBlkSize, bytesRcvd,
waitTime, totalRcvBytes = 0;
UInt8 *newRcvBuffer;
UInt16 dataLen = sizeof(UInt32);
Err* error;

// The default receive buffer is only 512 bytes;
increase it if

// necessary. The following lines are just an
example of how to

// do it, but its necessity depends on the
ability of the code

// to retrieve data in a timely manner.
newRcvBuffer = MemPtrNew(k2KBytes); // Allocate

new rcv buffer.
if (newRcvBuffer)

// Set new rcv buffer.
error = SrmSetReceiveBuffer(thePort,

newRcvBuffer, k2KBytes);
if (error)

goto Exit;
else

return memErrNotEnoughSpace;

// Initialize the maximum bytes to receive at
one time.

maxRcvBlkSize = k2KBytes;
// Remember how many bytes are left to receive.
bytesLeft = *bufSizeP;
// Only wait 1/5 of a second for bytes to

arrive.
waitTime = SysTicksPerSecond() / 5;
Palm OS Programmer’s Companion 249



Serial  Communicat ion
The New Serial Manager
// Now loop while getting blocks of data and
filling the buffer.

do {
// Is the max size larger then the number of

bytes left?
if (bytesLeft < maxRcvBlkSize)

// Yes, so change the rcv block amount.
maxRcvBlkSize = bytesLeft;

// Try to receive as much data as possible,
// but wait only one second for it.
bytesRcvd = SrmReceive(thePort,  rcvDataP,

maxRcvBlkSize, waitTime, &error);
// Remember the total number of bytes

received.
totalRcvBytes += bytesRcvd;
// Figure how many bytes are left to receive.
bytesLeft -= bytesRcvd;
rcvDataP += bytesRcvd; // Advance the

rcvDataP.
// If there was a timeout and no data came

through...
if ((error == serErrTimeOut) && (bytesRcvd ==

0))
goto Exit; // ...bail out and report the

error.
// If there's some other error, bail out.
if ((error) && (error != serErrTimeOut))

goto Exit;

// Call a function to handle any pending
events because

// someone might press the cancel button.
// YourDrainEventQueue();

// Continue receiving data until all data has
been received.

} while (bytesLeft);

// Clearing the receive buffer can also be done
right before

// the port is to be closed.
250 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
// Set back the default buffer when we're done.
SrmSetReceiveBuffer(thePort, 0L, 0);
MemPtrFree(newRcvBuffer); // Free the space.

Exit:
*bufSizeP = totalRcvBytes;
return error;

}

Writing a Serial or Virtual Device Driver
The new serial manager supports the ability to add other serial
hardware device drivers to the system. It also supports adding
virtual device drivers, which transmit and receive data in blocks,
instead of a byte at a time. The following sections discuss writing
serial and virtual device drivers, which are installed as code
resources on the Palm device.

Serial Driver (sdrv) Code Resources

A serial driver (sdrv) is a code resource (ID = 0) that is
independently compiled and installed on a Palm device. It provides
a hardware abstraction layer (HAL) for the serial hardware (the
UART). Serial driver .prc files are of file type ‘sdrv’ and their creator
type is chosen by the developer (and must be registered with Palm,
Inc.) to denote the type of hardware (for example, the 68328 UART
driver has creator ‘u328’). When the new serial manager is installed,
it searches the database manager for code resources of the ‘sdrv’ file
type and then calls the driver’s entry point function to determine if
the hardware that the driver supports is present and, if so, to get
information about the features and capabilities of the hardware.

NOTE: Creator types with all lowercase letters are reserved by
Palm, Inc. For more information about assigning and registering
creator types, see “Assigning a Creator ID” on page 29.

Serial drivers are responsible for installing and removing their
interrupt handlers. In addition, they must be aware of other
hardware that may share the IRQ line and be sure to pass along the
Palm OS Programmer’s Companion 251



Serial  Communicat ion
The New Serial Manager
interrupt to other installed handlers, if required. See the SdrvOpen
function for details.

Serial Driver Functions

There are eight functions that each serial driver must minimally
support in order to work with the new serial manager. These
functions are briefly described in this section. For details on the
exact operations each function must perform, see the function
descriptions in the Palm OS SDK Reference.

The functions a serial driver must implement include:

• DrvEntryPoint  must be the first function defined in a
serial driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the new serial manager jumps to the
beginning of the code resource and begins execution at
DrvEntryPoint . This function is called at system restart,
when the new serial manager is building a database of
installed drivers and their capabilities, and when a serial port
is opened.

• The SdrvOpen  function is responsible for initializing the
serial hardware to send and receive data, and installing an
interrupt handler.

• The SdrvClose function must handle all activities needed to
power-down the UART and remove the interrupt handler.

• SdrvControl  extends the SrmControl  function to the
level of the hardware.

• SdrvStatus  returns a bitfield that describes the current
state of the UART.

• SdrvWriteChar  writes a byte to the appropriate UART
register for transmission.

• SdrvReadChar  reads a byte (if available) from the receive
FIFO of the UART. It’s best to implement the
SdrvrReadChar  function in assembly language.

• The SdrvISP function is called when a hardware interrupt is
generated on the IRQ line associated with the serial
hardware. It determines if the interrupt is for this particular
serial hardware. If so, it calls the saveDataProc  function
(passed to SdrvOpen ), which handles reading the data from
252 Palm OS Programmer’s Companion



Serial  Communicat ion
The New Serial Manager
the UART by calling the SdrvReadChar function. It’s best to
implement the SdrvISP  function in assembly language.

Virtual Driver (vdrv) Code Resources

A Virtual Driver is a code resource (ID=0) that is independently
compiled and installed on a Palm device. Virtual driver .prc files are
of file type ‘vdrv’ and their creator type is chosen by the developer
(and must be registered with Palm, Inc.). When the new serial
manager is installed, it searches the database manager for code
resources of the ‘vdrv’ type and then calls the driver’s entry point
function to get information about the features and capabilities of
this virtual device. Unlike serial device drivers, virtual device
drivers send and receive data in blocks instead of transferring one
byte at a time. Their purpose is to abstract a level of communication
protocol away from serial devices without forcing applications to
work through a different API than the serial manager that may
already be used for normal RS-232 serial communication.

Virtual Driver Functions

There are six functions that each virtual driver must minimally
support in order to work with the new serial manager. These
functions are briefly described in this section. For details on the
exact operations each function must perform, see the function
descriptions in the Palm OS SDK Reference.

The functions a virtual driver must implement include:

• DrvEntryPoint  must be the first function defined in a
virtual driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the new serial manager jumps to the
beginning of the code resource and begins execution at
DrvEntryPoint . This function is called at system restart,
when the new serial manager is building a database of
installed drivers and their capabilities, and when a virtual
port is opened.

• The VdrvOpen  function is responsible for initializing the
virtual device to begin communication.

• The VdrvClose function must handle all activities needed to
close the virtual device.
Palm OS Programmer’s Companion 253



Serial  Communicat ion
The Connection Manager
• VdrvControl  extends the SrmControl  function to the
level of the virtual device.

• VdrvStatus  returns a bitfield that describes the current
state of the virtual device.

• VdrvWrite  writes a block of bytes to the virtual device.

Note that there is no virtual read function in the current
implementation. Virtual devices must save received data by using
the functions provided in the DrvrRcvQType when they are notified
that data is available via some callback mechanism.

The Connection Manager
The connection manager allows other applications to access, add,
and delete connection profiles contained in the Connection
preferences panel. The Connection panel replaces the original
Modem panel on the Palm device. A connection profile includes
information on the hardware port to be used for a particular
connection and the port details (speed, flow control, modem
initialization string, etc.).

Because there are many more connection choices available to users
(serial cable, IR, modem, network, etc.), the connection manager
was developed to manage connection profiles that save preferences
for various connection types.

The connection manager provides functions that list the saved
connection profiles (CncGetProfileList ), return details for a
specific profile (CncGetProfileInfo ), add a profile
(CncAddProfile ), and delete a profile (CncDeleteProfile ).

NOTE: The connection manager is not available on all Palm
devices. It is available by flash ROM update on Palm III and
upgraded PalmPilot devices and some later devices. Before
making any connection manager calls, you must ensure that it is
present.
254 Palm OS Programmer’s Companion



Serial  Communicat ion
The Serial Link Protocol
Because not all Palm devices will (or even can) have the connection
manager installed, it’s important that you check for its existence
before making any connection manager calls. You can check by
checking for the existence of the new serial manager, as described in
the section “Checking for the New Serial Manager” on page 241.
These managers work together and so are always installed together.

The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism that is used by the Palm desktop software and
debugger. SLP provides robust error detection with CRC-16. SLP is
a best-effort protocol; it does not guarantee packet delivery (packet
delivery is left to the higher-level protocols). For enhanced error
detection and implementation convenience of higher-level
protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures
The following sections describe:

•  SLP Packet Format

• Packet Type Assignment

•  Socket ID Assignment

•  Transaction ID Assignment

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 9.3.

Figure 9.3 Structure of a Serial Link Packet
Palm OS Programmer’s Companion 255



Serial  Communicat ion
The Serial Link Protocol
• The packet header contains the packet signature, the
destination socket ID, the source socket ID, packet type,
client data size, transaction ID, and header checksum. The
packet signature is composed of the three bytes 0xBE, 0xEF,
0xED, in that order. The header checksum is an 8-bit
arithmetic checksum of the entire packet header, not
including the checksum field itself.

• The client data is a variable-size block of binary data
specified by the user and is not interpreted by the Serial Link
Protocol.

• The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet footer

Client data

Packet header

s

signature (3):0xBE
0xEF
0xED

CRC-16 (2)

destination socket (1)
source socket (1)
packet type (1)
client data size (2)
transaction ID (1)
header checksum (1)
256 Palm OS Programmer’s Companion



Serial  Communicat ion
The Serial Link Protocol
Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type
assignments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are
reserved by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and 0xE0
through 0xFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The
following transaction ID values are currently reserved:

0x00 Remote Debugger, Remote Console, and System Remote
Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

0x04 -0xCF Reserved for dynamic assignment.

0xD0 - 0xDF Reserved for testing.

0x00 and 0xFF Reserved for use by the system software.
Palm OS Programmer’s Companion 257



Serial  Communicat ion
The Serial Link Manager
Transmitting an SLP Packet
This section provides an overview of the steps involved in
transmitting an SLP packet. The next section describes the
implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.

3. Transmit the packet header, client data, and packet footer.

4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its
checksum.

3. Read in the client data.

4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

The Serial Link Manager
The serial link manager is the Palm OS implementation of the Serial
Link Protocol.

Serial link manager provides the mechanisms for managing
multiple client sockets, sending packets, and receiving packets both

0x00 Reserved by the Palm OS implementation of SLP to
request automatic transaction ID generation.

0xFF Reserved for the connection manager’s WakeUp
packets.
258 Palm OS Programmer’s Companion



Serial  Communicat ion
The Serial Link Manager
synchronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager
Before an application can use the services of the serial link manager,
the application must open the manager by calling SlkOpen . Success
is indicated by error codes of 0 (zero) or slkErrAlreadyOpen . The
return value slkErrAlreadyOpen  indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you finish using the serial link manager, call SlkClose .
SlkClose  may be called only if SlkOpen  returned 0 (zero) or
slkErrAlreadyOpen . When the open count reaches zero,
SlkClose  frees resources allocated by SlkOpen .

To use the serial link manager socket services, open a Serial Link
socket by calling SlkOpenSocket . Pass a reference number or port
ID (for the new serial manager) of an opened and initialized
communications library (see SlkClose ), a pointer to a memory
location for returning the socket ID, and a Boolean indicating
whether the socket is static or dynamic. If a static socket is being
opened, the memory location for the socket ID must contain the
desired socket number. If opening a dynamic socket, the new socket
ID is returned in the passed memory location. Sharing of sockets is
not supported. Success is indicated by an error code of 0 (zero). For
information about static and dynamic socket IDs, see “Socket ID
Assignment” on page 257.

When you have finished using a Serial Link socket, close it by
calling SlkCloseSocket . This releases system resources allocated
for this socket by the serial link manager.

To obtain the communications library reference number for a
particular socket, call SlkSocketRefNum . The socket must already
be open. To obtain the port ID for a socket, if you are using the new
serial manager, call SlkSocketPortID .

To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout .
Palm OS Programmer’s Companion 259



Serial  Communicat ion
The Serial Link Manager
To flush the receive stream for a particular socket, call
SlkFlushSocket , passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call
SlkSetSocketListener , passing the socket number of an open
socket and a pointer to the SlkSocketListenType  structure.
Because the serial link manager does not make a copy of the
SlkSocketListenType  structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The SlkSocketListenType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SlkSocketListenType  structure
specifies pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be specified:

• Packet header buffer (size of SlkPktHeaderType ).

• Packet body buffer, which must be large enough for the
largest expected client data size.

Both buffers can be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the
SlkSocketListenType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the
responsibility to “drive” the serial link manager receiver by
periodically calling SlkReceivePacket .

To send a packet, call SlkSendPacket , passing a pointer to the
packet header (SlkPktHeaderType ) and a pointer to an array of
SlkWriteDataType  structures. SlkSendPacket  stuffs the
signature, client data size, and the checksum fields of the packet
header. The caller must fill in all other packet header fields. If the
transaction ID field is set to 0 (zero), the serial link manager
automatically generates and stuffs a new non-zero transaction ID.
The array of SlkWriteDataType  structures enables the caller to
specify the client data part of the packet as a list of noncontiguous
260 Palm OS Programmer’s Companion



Serial  Communicat ion
The Serial Link Manager
blocks. The end of list is indicated by an array element with the
size  field set to 0 (zero). Listing 3.1 incorporates the processes
described in this section.

Listing 9.2 Sending a Serial Link Packet

Err err;
SlkPktHeaderType sendHdr;

//serial link packet header
SlkWriteDataType writeList[2];

//serial link write data segments
UInt8 body[20];

//packet body(example packet body)

// Initialize packet body
...

// Compose the packet header
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// let Serial Link Manager set the transId
// Specify packet body
writeList[0].size = sizeof(body);

// first data block size
writeList[0].dataP = body;

// first data block pointer
writeList[1].size = 0;

// no more data blocks

// Send the packet
err = SlkSendPacket( &sendHdr, writeList );

...
}

Palm OS Programmer’s Companion 261



Serial  Communicat ion
The Serial Link Manager
Listing 9.3 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given
the previous
// transaction ID. Can start with any seed value.
//

UInt8 NextTransactionID (UInt8
previousTransactionID)
{

UInt8 nextTransactionID;

// Generate a new transaction id, avoid the
// reserved values (0x00 and 0xFF)
if ( previousTransactionID >= (UInt8)0xFE )

nextTransactionID = 1; // wrap around
else

nextTransactionID = previousTransactionID + 1;
// increment

return nextTransactionID;
}

To receive a packet, call SlkReceivePacket . You may request a
packet for the passed socket ID only, or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout
indicates how long the receiver should wait for a packet to begin
arriving before timing out. A timeout value of (-1) means “wait
forever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.
262 Palm OS Programmer’s Companion



Serial  Communicat ion
Summary of Serial Communications
Summary of Serial Communications
Serial Manager Functions New Serial Manager Functions

SerClearErr
SerClose
SerControl
SerGetSettings
SerGetStatus
SerOpen
SerReceive
SerReceiveCheck
SerReceiveFlush
SerReceiveWait
SerSend
SerSendFlush
SerSendWait
SerSetReceiveBuffer
SerSetSettings

SrmClearErr
SrmClose
SrmControl
SrmGetDeviceCount
SrmGetDeviceInfo
SrmGetStatus
SrmOpen
SrmOpenBackground
SrmPrimeWakeupHandler
SrmReceive
SrmReceiveCheck
SrmReceiveFlush
SrmReceiveWait
SrmReceiveWindowClose
SrmReceiveWindowOpen
SrmSend
SrmSendCheck
SrmSendFlush
SrmSendWait
SrmSetReceiveBuffer
SrmSetWakeupHandler
WakeupHandlerProc

Serial Driver Functions Virtual Driver Functions

DrvEntryPoint
SdrvClose
SdrvControl
SdrvISP
SdrvOpen
SdrvReadChar
SdrvStatus
SdrvWriteChar

DrvEntryPoint
GetSize
GetSpace
VdrvControl
VdrvOpen
VdrvStatus
VdrvWrite
WriteBlock
WriteByte
Palm OS Programmer’s Companion 263



Serial  Communicat ion
Summary of Serial Communications
Connection Manager Functions Serial Link Manager Functions

CncAddProfile
CncDeleteProfile
CncGetProfileInfo
CncGetProfileList

SlkClose
SlkCloseSocket
SlkFlushSocket
SlkOpen
SlkOpenSocket
SlkReceivePacket
SlkSendPacket
SlkSetSocketListener
SlkSocketPortID
SlkSocketSetTimeout
264 Palm OS Programmer’s Companion



10
Beaming (Infrared
Communication)
The Palm OS® provides two levels of support for beaming, or
infrared communication (IR):

• The Exchange Manager provides a high-level interface that
handles all of the communication details transparently.

• The IR Library provides a low-level, direct interface to the IR
communications capabilities of the Palm OS. It is designed
for applications that want more direct access to the IR
capabilities than the exchange manager provides.

This chapter discusses these two facilities for IR communication.

Exchange Manager
The Palm OS exchange manager provides a simple interface for
Palm OS applications to send and receive typed data from any
number of remote devices and protocols. The device at the remote
end of a connection does not need to know it is talking to a Palm OS
device. The exchange manager can be used with industry standard
protocols and data formats. The burden of understanding the
protocols and data formats is on the Palm OS application using the
exchange manager.

The exchange manager was developed to provide a facility by
which Palm OS applications could communicate directly with
external devices and foreign data formats, without having to be tied
to the HotSync® mechanism and conduits. In the increasingly
complex world of the Internet, wireless communications, and
infrared communications, it cannot be expected that all these modes
of communication must support HotSync and provide the
appropriate conduits on the other end. The Palm OS device must be
able to deal directly with foreign data formats since there will not be
conduits on the remote end to prepare the data. The data may also
Palm OS Programmer’s Companion 265



Beaming ( Infrared Communicat ion)
Exchange Manager
be sent without regard to the version or even the existence of
particular software on the device.

Overview
The exchange manager is designed as a generic communications
facility by which typed data objects can be sent and received. It is
designed to support a variety of underlying transport mechanisms.
Currently, the exchange manager supports only the IR (beaming)
capability of the Palm III™ and later devices (and upgraded
PalmPilot™ devices).

NOTE: When used for IR communication, the exchange
manager uses the OBEX IrDA protocol. The only level of OBEX
supported currently is for the Put operation. The Palm III can act
as both a client and a server.

The exchange manager API provides a mechanism for exchanging
typed data objects between applications. An object is a stream of
bytes with some information about its contents attached. The
content information includes a creator ID, a MIME data type, and a
filename. An application that wants to send data using the exchange
manager must provide at least one of these pieces of information.
An application that is able to receive an object registers itself with
the exchange manager (ExgRegisterData ) and specifies what
data types and file extensions it can accept.

A key data structure used by the exchange manager is the
ExgSocketType  data type. This exchange socket structure defines
information about the connection and the type of data to be
exchanged. When you are sending data, you must supply this
structure with the appropriate information filled in. When you are
receiving, this structure gives you information about the connection
and the incoming data. (Note that the use of the term “socket” in the
exchange manager API is not related to the term “socket” as used in
sockets communication programming.)
266 Palm OS Programmer’s Companion



Beaming ( Infrared Communicat ion)
Exchange Manager
NOTE: The current implementation of the IR library does not
send data type information, but it may do so in the future. It is
recommended that you write information for the data type field of
the socket, but do not expect to receive type information. Instead,
use a filename including the extension to identify content. When
registering, register for a file extension.

Exchange Manager and Launch Codes
When receiving incoming data, the exchange manager
communicates with applications via launch codes. The exchange
manager sends an application a series of three launch codes when it
receives data for it. These are:

• sysAppLaunchCmdExgAskUser

• sysAppLaunchCmdExgReceiveData

• sysAppLaunchCmdGoto

The exchange manager sends the first launch code,
sysAppLaunchCmdExgAskUser , when it has determined that
incoming data is destined for a particular application (based on
which application has registered to receive data of that type). This
launch code lets the application tell the exchange manager whether
or not to display a dialog asking the user if they want to accept the
data. If the application chooses not to handle this launch command,
the default course of action is that the exchange manager displays a
dialog asking the user if they want to accept the incoming data. In
most cases, applications won’t need to handle this launch code,
since the default action is the preferred alternative.

Palm OS 3.5 and higher provide an alternative version of the dialog
that displays a category pop-up list so that users can file the
incoming data at the same time it is received. The pop-up list is only
displayed if you handle the launch code and call ExgDoDialog
directly. See that function’s description in the Palm OS SDK Reference
for more information.

The application can respond to this launch code by setting the
result  field in the parameter block to the appropriate value. If it
wants to allow the exchange manager to display a dialog, it should
Palm OS Programmer’s Companion 267



Beaming ( Infrared Communicat ion)
Exchange Manager
leave the result field set to exgAskDialog (the default value). To
disable display of the dialog and to automatically accept the
incoming data (as if the user had pressed OK in the dialog), set the
result  field to exgAskOk . To disable display of the dialog and to
automatically reject the incoming data (as if the user had pressed
Cancel in the dialog), set the result field to exgAskCancel . In the
later case, the data is discarded and no further action is taken by the
exchange manager.

If the application sets the result field to exgAskOk , or the dialog is
displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code,
sysAppLaunchCmdExgReceiveData , so that it can actually
receive the data. This launch code notifies the application that it
should receive the data.

The application should use the exchange manager functions
ExgAccept , ExgReceive , and ExgDisconnect  to receive the
data and store it or do whatever it needs to with the data.

The parameter block sent with this launch code is of the
ExgSocketPtr  data type. It is a pointer to the ExgSocketType
structure corresponding to the exchange manager connection via
which the data is arriving. You will need to pass this pointer to the
ExgAccept  function to begin receiving the data. Note that in the
socket structure, the length  field may not be accurate, so in your
receive loop you should be flexible in handling more or less data
than length  specifies.

After you have finished receiving the data and before you return
from the PilotMain  routine, you must set up the goToCreator
and goToParams  fields in the socket structure. Set in the
goToCreator  field the creator ID of the application that should be
launched to view the received data (normally the same application
that received the data). If no application should be launched, then
set this to NULL. Set in the goToParams structure information that
identifies the record to go to when the application is launched. It is
recommended that you use a unique ID to identify the record,
rather than the record index, since indexes might change. You can
put unique ID information into the goToParams.matchCustom
field.
268 Palm OS Programmer’s Companion



Beaming ( Infrared Communicat ion)
IR Library
Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. Be sure to check if you have globals available and don’t
try to access them if they are not available. In addition, if the
application has multiple code segments, you cannot access code
outside of segment 0 (the first segment) if the application is
launched with this launch code.

Assuming that everything has proceeded normally, the exchange
manager again launches the application identified in the
goToCreator  field of the socket structure with the
sysAppLaunchCmdGoto launch code. This allows the user to view
the received item.

IR Library
The IR (InfraRed) library is a shared library that provides a direct
interface to the IR communications capabilities of the Palm OS. It is
designed for applications that want more direct access to the IR
capabilities than the exchange manager provides.

The IR support provided by the Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved
in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://www.IrDA.org.

IrDA Stack
The IrDA stack comprises a number of protocol layers, of which
some are required and some are optional. The complete stack looks
something like Figure 10.1.
Palm OS Programmer’s Companion 269



Beaming ( Infrared Communicat ion)
IR Library
Figure 10.1 IrDA Protocol Stack

The SIR/FIR layer is purely hardware. The SIR (Serial IR) layer
supports speeds up to 115k bps while the FIR (Fast IR) layer
supports speeds up to 4M bps. IrLAP is the IR Link Access Protocol
that provides a data pipe between IrDA devices. IrLMP, the IR Link
Management Protocol, manages multiple sessions using the IrLAP.
Tiny TP is a lightweight transfer protocol on which some higher-
level IrDA layers are built.

One or more of SIR/FIR must be implemented, and Tiny TP, IrLMP
and IrLAP must also be implemented. IrComm provides serial and
parallel port emulation over an IR link and is optional (it is not
currently supported in the Palm OS). IrLAN provides an access
point to Local Area Network protocol adapters. It too is optional
(and is not supported in the Palm OS).

OBEX is an object exchange protocol that can be used (for instance)
to transfer business cards, calendar entries or other objects between
devices. It too is optional and is supported in the Palm OS. The
capabilities of OBEX are made available through the exchange
manager; there is no direct API for it.

The Palm OS implements all the required protocol layers (SIR,
IrLAP, IrLMP, and Tiny TP), as well as the OBEX layer, to support
the Exchange Manager. Palm III devices provide SIR (Serial IR)
hardware supporting the following speeds: 2400, 9600, 19200, 38400,
57600, and 115200 bps. The software (IrOpen ) currently limits
bandwidth to 57600 bps by default, but you can specify a connection
speed of up to 115200 bps if desired.

IrComm IrLAN OBEX

TinyTP

IrLMP

IrLAP

SIR FIR
270 Palm OS Programmer’s Companion



Beaming ( Infrared Communicat ion)
Summary of Beaming
The stack is capable of connection-based or connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register
information about themselves and retrieve information about other
devices and the services they offer.

Accessing the IR Library
Before you can use the IR library, you must obtain a reference
number for it by calling the function SysLibFind , as in this
example:

err = SysLibFind(irLibName, &refNum);

This function returns the library reference number in the refNum
parameter. This parameter is passed to most of the other functions
in the IR library.

Summary of Beaming
Exchange Manager Functions

ExgAccept ExgPut

ExgDBRead ExgReceive

ExgDBWrite ExgRegisterData

ExgDisconnect ExgSend

ExgDoDialog

IR Library Functions

IrAdvanceCredit IrIsNoProgress

IrBind IrIsRemoteBusy

IrClose IrLocalBusy

IrConnectIrLap IrMaxRxSize
Palm OS Programmer’s Companion 271



Beaming ( Infrared Communicat ion)
Summary of Beaming
IrConnectReq IrMaxTxSize

IrConnectRsp IrOpen

IrDataReq IrSetConTypeLMP

IrDisconnectIrLap IrSetConTypeTTP

IrDiscoverReq IrSetDeviceInfo

IrIsIrLapConnected IrTestReq

IrIsMediaBusy IrUnbind

IR Library IAS Database Functions

IrIAS_Add IrIAS_GetUserString

IrIAS_GetInteger IrIAS_GetUserStringCharSet

IrIAS_GetIntLsap IrIAS_GetUserStringLen

IrIAS_GetObjectID IrIAS_Next

IrIAS_GetOctetString IrIAS_Query

IrIAS_GetOctetStringLen IrIAS_SetDeviceName

IrIAS_GetType IrIAS_StartResult

IR Library Functions
272 Palm OS Programmer’s Companion



11
Network
Communication
Two different Palm OS® libraries provide network services to
applications:

• The net library provides basic network services using TCP
and UDP via a socket API. This library is discussed in the
section Net Library.

• The Internet library builds on the net library to provide a
socket-like API to high-level Internet protocols such as
HTTP. This library is discussed in the section Internet
Library.

Net Library
The net library allows Palm OS applications to easily establish a
connection with any other machine on the Internet and transfer data
to and from that machine using the standard TCP/IP protocols.

The basic network services provided by the net library include:

• Stream-based, guaranteed delivery of data using TCP
(Transmission Control Protocol).

• Datagram-based, best-effort delivery of data using UDP
(User Datagram Protocol).

You can implement higher-level Internet-based services (file
transfer, e-mail, web browsing, etc.) on top of these basic delivery
services.

IMPORTANT: Applications cannot directly use the net library to
make wireless connections. Use the Internet library for wireless
connections.
Palm OS Programmer’s Companion 273



Network Communicat ion
Net Library
This section describes how to use the net library in your application.
It covers:

• About the Net Library

• Net Library Usage Steps

• Obtaining the Net Library’s Reference Number

• Setting Up Berkeley Socket API

• Setup and Configuration Calls

• Opening the Net Library

• Closing the Net Library

• Version Checking

• Network I/O and Utility Calls

• Berkeley Sockets API Functions

• Extending the Network Login Script Support

About the Net Library
The net library consists of two parts: a netlib interface and a net
protocol stack.

The netlib interface is the set of routines that an application calls
directly when it makes a net library call. These routines execute in
the caller’s task like subroutines of the application. They are not
linked in with the application, however, but are called through the
library dispatch mechanism.

With the exception of functions that open, close, and set up the net
library, the net library’s API maps almost directly to the Berkeley
UNIX sockets API, the de facto standard API for Internet
applications. You can compile an application written to use the
Berkeley sockets API for the Palm OS with only slight changes to the
source code.

The net protocol stack runs as a separate task in the operating
system. Inside this task, the TCP/IP protocol stack runs, and
received packets are processed from the network device drivers.
The netlib interface communicates with the net protocol stack
through an operating system mailbox queue. It posts requests from
274 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
applications into the queue and blocks until the net protocol stack
processes the requests.

Having the net protocol stack run as a separate task has two big
advantages:

• The operating system can switch in the net protocol stack to
process incoming packets from the network even if the
application is currently busy.

• Even if an application is blocked waiting for some data to
arrive off the network, the net protocol stack can continue to
process requests for other applications.

One or more network interfaces run inside the net protocol stack
task. A network interface is a separately linked database containing
code necessary to abstract link-level protocols. For example, there
are separate network interface databases for PPP and SLIP. A
network interface is generally specified by the user in the Network
preference panel. In rare circumstances, interfaces can also be
attached and detached from the net library at runtime as described
in the section “Settings for Interface Selection” later in this chapter.

Constraints

Because it’s unclear whether all future platforms will need or want
network support (especially devices with very limited amounts of
memory), network support is an optional part of the operating
system. For this reason, the net library is implemented as a system
library that is installed at runtime and doesn’t have to be present for
the system to work properly.

When the net library is present and running, it requires an estimated
additional 32 KB of RAM. This in effect doubles the overall system
RAM requirements, currently 32 KB without the net library. It’s
therefore not practical to run the net library on any platform that has
128 KB or less of total RAM available since the system itself will
consume 64 KB of RAM (leaving only 64 KB for user storage in a 128
KB system).

Because of the RAM requirements, the net library is supported only
on PalmPilot Professional and newer devices running Palm OS 2.0
and later.
Palm OS Programmer’s Companion 275



Network Communicat ion
Net Library
All applications written for Palm OS must pay special attention to
memory and CPU usage because Palm OS runs on small devices
with limited amounts of memory and other hardware resources.
Applications that use the net library, therefore, must pay even more
attention to memory usage. After opening the net library, the total
remaining amount of RAM available to an application is
approximately 12 KB on a PalmPilot Professional and 36KB on a
Palm III™.

The Programmer’s Interface

There are essentially two sets of API into the net library: the net
library’s native API, and the Berkeley sockets API. The two APIs
map almost directly to each other. You can use the Berkeley sockets
API with no performance penalty and little or no modifications to
any existing code that you have.

The header file <unix/sys_socket.h>  contains a set of macros
that map Berkeley sockets calls directly to net library calls. The main
difference between the net library API and the Berkeley sockets API
is that most net library API calls accept additional parameters for:

• A reference number. All library calls in the Palm OS must
have the library reference number as the first parameter.

• A timeout. In consumer systems such as the Palm OS device,
infinite timeouts don’t work well because the end user can’t
“kill” a process that’s stuck. The timeout allows the
application to gracefully recover from hung connections. The
default timeout is 2 seconds.

• An error code. The sockets API by convention returns error
codes in the application’s global variable errno . The net
library API doesn’t rely on any application global variables.
This allows system code (which cannot have global
variables) to use the net library API.

The macros in sys_socket.h  do the following:

For... The macros pass...

reference
number

AppNetRefnum  (application global variable).
276 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
For example, consider the Berkeley sockets call socket , which is
declared as:

Int16 socket(Int16 domain, Int16 type,
Int16 protocol);

The equivalent net library call is NetLibSocketOpen , which is
declared as:

NetSocketRef NetLibSocketOpen(UInt16 libRefnum,
NetSocketAddrEnum domain,
NetSocketTypeEnum type, Int16 protocol,
Int32 timeout, Err* errP)

The macro for socket  is:

#define socket(domain,type,protocol) \
NetLibSocketOpen(AppNetRefnum, domain, type,
protocol, AppNetTimeout, &errno)

Net Library Usage Steps
In general, using the net library involves the steps listed below. The
next several sections describe some of the steps in more detail.

For an example of using the net library, see the example application
NetSample in the Palm OS Examples directory. It exercises many
of the net library calls.

1. Obtain the net library’s reference number.

Because the net library is a system library, all net library calls take
the library’s reference number as the first parameter. For this
reason, your first step is to obtain the reference number and save it.
See “Obtaining the Net Library’s Reference Number.”

2. Set up for using Berkeley sockets API.

You can either use the net library’s native API or the Berkeley
sockets API for the majority of what you do with the net library. If

timeout AppNetTimeout  (application global variable).

error code Address of the application global errno.

For... The macros pass...
Palm OS Programmer’s Companion 277



Network Communicat ion
Net Library
you’re already familiar with Berkeley sockets API, you’ll probably
want to use it instead of the native API. If so, follow the steps in
“Setting Up Berkeley Socket API.”

3. If necessary, configure the net library the way you want it.

Typically, users set up their networking services by using the
Network preferences panel. Most applications don’t set up the
networking services themselves; they simply access them through
the net library preferences database. In rare instances, your
application might need to perform some network configuration,
and it usually should do so before the net library is open. See “Setup
and Configuration Calls.”

4. Open the net library right before the first network access.

Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from
the system when an application actually needs to use its services.
An Internet application must therefore inform the system when it
needs to use the net library by opening the net library when it starts
up and by closing it when it exits. See “Opening the Net Library.”

5. Make calls to access the network.

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the
Berkeley sockets API or the native net library API. See “Network I/
O and Utility Calls.”

6. Close the net library when you’re finished with it.

Closing the net library frees up the resources. See “Closing the Net
Library.”

Obtaining the Net Library’s Reference Number
To determine the reference number, call SysLibFind ,  passing the
name of the net library, "Net.lib ". In addition, if you intend to use
Berkeley sockets API, save the reference number in the application
global variable AppNetRefnum .

err = SysLibFind("Net.lib", &AppNetRefnum);
if (err) {/* error handling here */}
278 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
Remember that the net library requires Palm OS version 2.0 or later.
If the SysLibFind  call can’t find the net library, it returns an error
code.

Setting Up Berkeley Socket API
To set up the use of Berkeley sockets API, do the following:

• Include the header file <unix/sys_socket.h> , provided
with the Palm OS SDK.

• Link your project with the module NetSocket.c , which
declares and initializes three required global variables:
AppNetTimeout , AppNetRefnum,  and errno .
NetLibSocket.c  also contains the glue code necessary for
a few of the Berkeley sockets functions.

• As described in the previous section, assign the net library’s
reference number to the variable AppNetRefnum .

• Adjust AppNetTimeout ’s value if necessary.

This value represents the maximum number of system ticks
to wait before a net library call expires. Most applications
should adjust this timeout value and possibly adjust it for
different sections of code. The following example sets the
timeout value to 10 seconds.

AppNetTimeout = SysTicksPerSecond() * 10;

Setup and Configuration Calls
The setup and configuration API calls of the net library are normally
only used by the Network preferences panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and configuration call saves its
settings in the net library preferences database in nonvolatile
storage for later retrieval by the runtime calls.

In rare instances, an application might need to perform setup and
configuration itself. For example, some applications might allow
users to select a particular “service” before trying to establish a
connection. Such applications present a pick list of service names
and allow the user to select a service name. This functionality is
provided via the Network preferences panel. The panel provides
Palm OS Programmer’s Companion 279



Network Communicat ion
Net Library
launch codes (defined in SystemMgr.h ) that allow an application
to present a list of possible service names to let the end user pick
one. The preferences panel then makes the necessary net library
setup and configuration calls to set up for that particular service.

Usually, the setup and configuration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 54, “Net Library” in Palm OS SDK Reference, describes the
behavior of each call in more detail.

Settings for Interface Selection

As you learned in the section “About the Net Library,” the net
library uses one or more network interfaces to abstract low-level
networking protocols. The user specifies which network interface to
use in the Network preference panel.

You can also use net library calls to specify which interface(s)
should be used:

• NetLibIFAttach attaches an interface to the library so that
it will be used when and if the library is open.

• NetLibIFDetach  detaches an interface from the library.

• NetLibIFGet  returns an interface’s creator and instance
number.

Unlike most net library functions, these functions can be called
while the library is open or closed. If the library is open, the specific
interface is attached or detached in real time. If the library is closed,
the information is saved in preferences and used the next time the
library is opened.

Each interface is identified by a creator and an instance number. You
need these values if you want to attach or detach an interface or to
query or set interface settings. You use NetLibIFGet to obtain this
information. NetLibIFGet  takes four parameters: the net library’s
reference number, an index into the library’s interface list, and
addresses of two variables where the creator and instance number
are returned.

The creator is one of the following values:

• netIFCreatorLoop  (Loopback network)
280 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
• netIFCreatorSLIP  (SLIP network)

• netIFCreatorPPP  (PPP network)

If you know which interface you want to obtain information about,
you can iterate through the network interface list, calling
NetLibIFGet with successive index values until the interface with
the creator value you need is returned.

Interface Specific Settings

The net library configuration is structured so that network interface-
specific settings can be specified for each network interface
independently. These interface specific settings are called IF settings
and are set and retrieved through the NetLibIFSettingGet  and
NetLibIFSettingSet  calls.

• The NetLibIFSettingGet  call takes a setting ID as a
parameter along with a buffer pointer and buffer size for the
return value of the setting. Some settings, like login script,
are of variable size so the caller must be prepared to allocate
a buffer large enough to retrieve the entire setting.
(NetLibIFSettingGet  returns the required size if you
pass NULL for the buffer. See the NetLibIFSettingGet
description in the reference documentation for more
information.)

• The NetLibIFSettingSet  call also takes a setting ID as a
parameter along with a pointer to the new setting value and
the size of the new setting.

If you’re using NetLibIFSettingSet  to set the login
script, see the next section.

For an example of using these functions, see the NetSample
example application in the Palm OS Examples  directory. The
function CmdSettings  in the file CmdInfo.c , for example, shows
how to loop through and obtain information about all of the
network interfaces.

Setting an Interface’s Login Script

The netIFSettingLoginScript setting is used to store the login
script for an interface. The login script is generated either from the
script that the user enters in the Network preferences panel or from
a script file that is downloaded onto the device during a HotSync®
Palm OS Programmer’s Companion 281



Network Communicat ion
Net Library
operation. The format of the script is rigid; if a syntactically
incorrect login script is presented to the net library, the results are
unpredictable. The basic format is a series of null-terminated
command lines followed by a null byte at the end of the script. Each
command line has the format:

<command-byte> [<parameter>]

where the command byte is the first character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Table 11.1 lists the possible commands.

The parameter string to the send (s ) command can contain the
escape sequences shown in Table 11.2.

Table 11.1 Login Script Commands

Function Command Parameter Example

Send s string s go PPP

Wait for w string w password:

Delay d seconds d 1

Get IP g g

Prompt a string a Enter Name:

Wait for
prompt

f string f ID:

Send CR s string s ^N

Send
UserID

s string s jdoe

Send
Password

s string s mypassword

Plugin
commanda

a. See “Extending the Network Login Script Support.”

sp string sp plugin: cmd: arg
282 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
Note also that login scripts can be created on a desktop computer
and then installed onto the device during synchronization. The
script commands are inspired by the Windows dial-up scripting
command language for dial-up networking. For documentation
from Microsoft, search for the file Script.doc  in the Windows
folder. The Network preferences panel on Palm OS supports the
following subset of commands:

set serviceName
set userName
set password
set phoneNumber
set primaryDNS
set secondaryDNS
set ipAddr
set closewait
set inactivityTimeout
set establishmentTimeout

Table 11.2 Send Command Escape Sequences

$USERID substitutes user name

$PASSWORD substitutes password

$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

 ^c if c is ‘@’ -> ‘_’, then byte value 0 -> 31
else if c is ‘a’ -> ‘z’, then byte value 1 -> 26
else c

<cr> carriage return (0x0D)

<lf> line feed (0x0A)

\" "

 \^ ^

 \< <

 \\ \
Palm OS Programmer’s Companion 283



Network Communicat ion
Net Library
set protocol
set dynamicIP
waitfor
transmit
getip
delay
prompt
waitforprompt
plugin " pluginname: cmd[: arg]"

The plugin  command is a Palm OS-specific extension used to
perform a command defined in a plugin. See “Extending the
Network Login Script Support” for more information on plugins.

Create a script file with the extension .pnc  or .scp  and place it in
the user’s install directory. The network conduit will download it to
the device during the next HotSync operation. Each script file
should contain only one service definition.

General Settings

In addition to the interface-specific settings, there’s a class of
settings that don’t apply to any one particular interface. These
general settings are set and retrieved through the
NetLibSettingGet  and NetLibSettingSet  calls. These calls
take setting ID, buffer pointer, and buffer size parameters.

Opening the Net Library
Call NetLibOpen  to open the net library, passing the reference
number you retrieved through SysLibFind . Before the net library
is opened, most calls issued to it fail with a netErrNotOpen  error
code.

err = NetLibOpen(AppNetRefnum, &ifErrs);
if (err || ifErrs) {/* error handling here */}

Multiple applications can have the library open at a time, so the net
library may already be open when NetLibOpen  is called. If so, the
function increments the library’s open count, which keeps track of
how many applications are accessing it, and returns immediately.
(You can retrieve the open count with the function
NetLibOpenCount .)
284 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
If the net library is not already open, NetLibOpen  starts up the net
protocol stack task, allocates memory for internal use by the net
library, and brings up the network connection. Most likely, the user
has configured the Palm OS device to establish a SLIP or PPP
connection through a modem and in this type of setup,
NetLibOpen  dials up the modem and establishes the connection
before returning.

If any of the attached network interfaces (such as SLIP or PPP) fail to
come up, the final parameter (ifErrs  in the example above)
contains the error number of the first interface that encountered a
problem.

It’s possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc.). Some applications may
therefore wish to close the net library using NetLibClose  if the
interface error parameter is non-zero and display an appropriate
message for the user. If an application needs more detailed
information, e.g. which interface(s) in particular failed to come up, it
can loop through each of the attached interfaces and ask each one if
it is up or not. For example:

UInt16 index, ifInstance;
UInt32 ifCreator;
Err err;
UInt8 up;
Char ifName[32];
...
for (index = 0; 1; index++) {

err = NetLibIFGet(AppNetRefnum, index,
&ifCreator, &ifInstance);

if (err) break;

settingSize = sizeof(up);
err = NetLibIFSettingGet(AppNetRefnum,

ifCreator, ifInstance, netIFSettingUp, &up,
&settingSize);

if (err || up) continue;
settingSize = 32;
Palm OS Programmer’s Companion 285



Network Communicat ion
Net Library
err = NetLibIFSettingGet(AppNetRefnum,
ifCreator, ifInstance, netIFSettingName,
ifName, &settingSize);

if (err) continue;

//display interface didn’t come up message
}
NetLibClose(AppNetRefnum, true);

Closing the Net Library
Before an application quits, or if it no longer needs to do network
I/O, it should call NetLibClose .

err = NetLibClose(AppNetRefnum, false);

NetLibClose  simply decrements the open count. The false
parameter specifies that if the open count has reached 0, the net
library should not immediately close. Instead, NetLibClose
schedules a timer to shut down the net library unless another
NetLibOpen  is issued before the timer expires. When the net
library’s open count is 0 but its timer hasn’t yet expired, it’s referred
to as being in the close-wait state.

Just how long the net library waits before closing is set by the user
in the Network preferences panel. This timeout value allows users
to quit from one network application and launch another
application within a certain time period without having to wait for
another network connection establishment.

If NetLibOpen  is called before the close timer expires, it simply
cancels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another
NetLibOpen is issued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory
allocated for internal use by the net library is freed.

It’s recommended that you allow the net library to enter the close-
wait state. However, if you do need the net library to close
immediately, you can do one of two things:

• Set NetLibClose ’s second parameter to true . This
parameter specifies whether the library should close
immediately or not.
286 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
• Call NetLibFinishCloseWait . This function checks the
net library to see if it’s in the close-wait state and if so,
performs an immediate close.

Version Checking
Besides using SysLibFind  to determine if the net library is
installed, an application can also look for the net library version
feature. This feature is only present if the net library is installed.
This feature can be used to get the version number of the net library
as follows:

UInt32* version;
err = FtrGet(netFtrCreator, netFtrNumVersion,

&version);

If the net library is not installed, FtrGet  returns a non-zero result
code.

The version number is encoded in the format 0xMMmfsbbb, where:

For example:

V1.1.2b3 would be encoded as 0x01122003

V2.0a2 would be encoded as 0x02001002

V1.0.1 would be encoded as 0x01013000

This document describes version 2.01 of the net library
(0x02013000).

Network I/O and Utility Calls
For the network I/O and utility calls, you can either make calls
using Berkeley sockets API or using the net library’s native API.

MM major version

m minor version

 f bug fix level

 s stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases
Palm OS Programmer’s Companion 287



Network Communicat ion
Net Library
Several books have been published that describe how to use
Berkeley sockets API to perform network communication. Net
library API closely mirrors Berkeley sockets API in this regard.
However, you should keep in mind these important differences
between using networking I/O on a typical computer and using net
library on a Palm OS device:

• You can open a maximum of four sockets at once in the net
library. This is to keep net library’s memory requirements to
a minimum.

• When you try to send a large block of data, the net library
automatically buffers only a portion of that block because of
the limited available dynamic memory. The function call
returns the number of bytes of data that it actually
transmitted. You must check the return value and if there’s
more data to send, call the function again until the
transmission is finished.

• If you expect to also receive data during a large transmission,
you should send a smaller block, then read back whatever is
available to read before sending the next block. In this way,
the amount of memory in the dynamic heap that must be
used to buffer data waiting to send out and data waiting to
be read back in by the application is kept to a minimum.

For more information, see the following:

• The next section, “Berkeley Sockets API Functions,” provides
tables that list the supported Berkeley sockets calls, the
corresponding native net library call, and gives a brief
description of what each call does.

• Chapter 54, “Net Library” of the Palm OS SDK Reference
provides detailed descriptions of each net library call. Where
applicable, it gives the equivalent sockets API call for each
net library native call.

• The NetSample  example application in the Palm OS
Examples  directory shows how to use the Berkeley sockets
API in Palm OS applications.

Berkeley Sockets API Functions
This section provides tables that list the functions in the Berkeley
sockets API that are supported by the net library. In some cases, the
288 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
calls have limited functionality from what’s found in a full
implementation of the sockets API and these limitations are
described here.

Socket Functions

Berkeley
Sockets
Function

Net Library Function Description

accept NetLibSocketAccept Accepts a connection from a stream-
based socket.

bind NetLibSocketBind Binds a socket to a local address.

close NetLibSocketClose Closes a socket.

connect NetLibSocketConnect Connects a socket to a remote
endpoint to establish a connection.

fcntl NetLibSocketOptionSet
NetLibSocketOptionGet
(...,netSocketOptSock
NonBlocking,...)

Supported only for socket refnum s
and the only commands it supports
are F_SETFL and F_GETFL. The
commands can be used to put a
socket into non-blocking mode by
setting the FNDELAY flag in the
argument parameter appropriately
— all other flags are ignored. The
F_SETFL, F_GETFL, and FNDELAY
constants are defined in <unix/
unix_fcntl.h> .

getpeername NetLibSocketAddr Gets the remote socket address for a
connection.

getsockname NetLibSocketAddr Gets the local socket address of a
connection.
Palm OS Programmer’s Companion 289



Network Communicat ion
Net Library
getsockopt NetLibSocketOptionGet Gets a socket’s control options. Only
the following options are
implemented:

• TCP_NODELAY

Allows the application to
disable the TCP output
buffering algorithm so that
TCP sends small packets as
soon as possible. This
constant is defined in <unix/
netinet_tcp.h> .

• TCP_MAXSEG

Get the TCP maximum
segment size. This constant is
defined in <unix/
netinet_tcp.h> .

• SO_KEEPALIVE

Enables periodic transmission
of probe segments when there
is no data exchanged on a
connection. If the remote
endpoint doesn’t respond, the
connection is considered
broken, and so_error  is set
to ETIMEOUT.

• SO_LINGER

Specifies what to do with the
unsent data when a socket is
closed. It uses the linger
structure defined in <unix/
sys_socket.h> .

Berkeley
Sockets
Function

Net Library Function Description
290 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
• SO_ERROR

Returns the current value of
the variable so_error ,
defined in <unix/
sys_socketvar.h>

• SO_TYPE

Returns the socket type to the
caller.

listen NetLibSocketListen Sets up the socket to listen for
incoming connection requests. The
queue size is quietly limited to 1.
(Higher values are ignored.)

read , recv ,
recvmsg ,
recvfrom

NetLibReceive
NetLibReceivePB

Read data from a socket. The recv ,
recvmsg , and recvfrom  calls
support the MSG_PEEK flag but not
the MSG_OOB or MSG_DONTROUTE
flags.

select NetLibSelect Allows the application to block on
multiple I/O events. The system will
wake up the application process
when any of the multiple I/O events
occurs.

This function uses the timeval
structure defined in <unix/
sys_time.h>  and the fd_set
structure defined in sys/types.h .

Berkeley
Sockets
Function

Net Library Function Description
Palm OS Programmer’s Companion 291



Network Communicat ion
Net Library
Also associated with this function
are the following four macros
defined in <unix/sys_types.h>:

• FD_ZERO

• FD_SET

• FD_CLR

• FD_ISSET

Besides socket descriptors, this
function also works with the “stdin”
descriptor, sysFileDescStdIn .
This descriptor is marked as ready
for input whenever a user or system
event is available in the event queue.
This includes any event that would
be returned by EvtGetEvent . No
other descriptors besides
sysFileDescStdIn  and socket
refnum s are allowed.

send ,
sendmsg ,
sendto

NetLibSend
NetLibSendPB

These functions write data to a
socket. These calls, unlike the recv
calls, do support the MSG_OOB flag.
The MSG_PEEK flag is not applicable
and the MSG_DONTROUTE flag is not
supported.

setsockopt NetLibSocketOptionSet This function sets control options of
a socket. Only the following options
are allowed:

• TCP_NODELAY

• SO_KEEPALIVE

• SO_LINGER

Berkeley
Sockets
Function

Net Library Function Description
292 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
Supported Network Utility Functions

shutdown NetLibSocketShutdown Similar to close() ; however, it
gives the caller more control over a
full-duplex connection.

socket NetLibSocketOpen Creates a socket for
communication.The only valid
address family is AF_INET . The only
valid socket types are
SOCK_STREAM, SOCK_DGRAM, and
in Palm OS version 3.0 and higher,
SOCK_RAW. The protocol parameter
should be set to 0.

write NetLibSend Writes data to a socket.

Berkeley
Sockets
Function

Net Library Function Description

Berkeley
Sockets
Function

Net Library Function Description

getdomainname NetLibSocketOptionGet
(..,
netSettingDomainName,
...)

Returns the domain name of the
local host.

gethostbyaddr NetLibGetHostByAddr Looks up host information given
the host’s IP address. It returns a
hostent  structure, as defined in
<netdb.h> .

gethostbyname NetLibGetHostByName Looks up host information given
the host’s name. It returns a
hostent  structure which is
defined in <netdb.h> .
Palm OS Programmer’s Companion 293



Network Communicat ion
Net Library
Supported Byte Ordering Macros

The byte ordering macros are defined in <unix/netinet_in.h>.
They convert an integer between network byte order and the host
byte order.

gethostname NetLibSettingGet (..,
netSettingHostName,
...)

Returns the name of the local host.

getservbyname NetLibGetServByName Returns a servent  structure,
defined in <netdb.h>  given a
service name.

gettimeofday glue code using
TimGetSeconds

Returns the current date and time.

setdomainname NetLibSettingSet (..,
netSettingDomainName,
...)

Sets the domain name of the local
host.

sethostname NetLibSettingSet (..,
netSettingHostName,
...)

Sets the name of the local host.

settimeofday glue code using
TimSetSeconds

Sets the current date and time.

Berkeley
Sockets
Function

Net Library Function Description

Berkeley
Sockets
Macro

Description

htonl Converts a 32-bit integer from host byte order to network byte order.

htons Converts a 16-bit integer from host byte order to network byte order.

ntohl Converts a 32-bit integer from network byte order to host byte order.

ntohs Converts a 16-bit integer from network byte order to host byte order.
294 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
Supported Network Address Conversion Functions

The network address conversion functions are declared in the
<unix/arpa_inet.h>  header file. They convert a network
address from one format to another, or manipulate parts of a
network address.

Extending the Network Login Script Support
Beginning in Palm OS 3.3, you can write a plugin that extends the
list of available script commands in the Network preferences panel.
You might do so, for example, if:

• You are a corporate IT shop, system integrator, or a token
card vendor and want the login script to properly respond to
a range of different connection scenarios defined by the
authentication server.

• You are a token card vendor and you want to create the Palm
OS version of your password generator.

Berkeley
Sockets
Function

Net Library
Function

Description

inet_addr NetLibAddrAToIN Converts an IP address from dotted
decimal format to 32-bit binary format.

inet_network glue code Converts an IP network number from a
dotted decimal format to a 32-bit binary
format.

inet_makeaddr glue code Returns an IP address in an in_addr
structure given an IP network number and
an IP host number in 32-bit binary format.

inet_lnaof glue code Returns the host number part of an IP
address.

inet_netof glue code Returns the network number part of an IP
address.

inet_ntoa NetLibAddrINToA Converts an IP address from 32-bit format
to dotted decimal format.
Palm OS Programmer’s Companion 295



Network Communicat ion
Net Library
• You want to perform conditional tests and branching during
the execution of the script.

The login script enhancement can also be installed on any device
that already has network library support (that is, PalmPilot™

Professional and newer devices running Palm OS 2.0 or higher). To
do so, you install a file named Network.prc  along with a PRC file
for the network interface you use (i.e., PPP or SLIP). These files
provide the new Network preferences panel, which contains
support for some new commands and support for the ability to
write script plugins.

The sections below describe the basics of how to write a login script
plugin. For more detailed information on the API you use to write a
plugin, see the chapter “Script Plugin” on page 1067 in the Palm OS
SDK Reference.

Writing the Login Script Plugin

To write a login script plugin, you create a project like you normally
would; however, specify 'scpt'  as the database type instead of
'appl' . (If you’re using Metrowerks CodeWarrior, you specify the
database type in the PalmRez post linker panel.)

In the PilotMain  function, the plugin should respond to two
launch codes:

• scptLaunchCmdListCmds  to inform the Network
preferences panel of the commands your plugin implements.

• scptLaunchCmdExecuteCmd  to execute one of your
commands.

Responding to scptLaunchCmdListCmds

The Network preferences panel sends the
scptLaunchCmdListCmds launch code when it is constructing the
pull-down list of available commands that it displays in its script
view. The panel sends this launch code to all PRCs of type 'scpt' .
It passes an empty structure of type PluginInfoType  as its
parameter block. Your plugin should respond by filling in the
structure with the following information:

– The name of your plugin (the name of the PRC file)
296 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
– The number of commands your plugin implements. No
more than pluginMaxNumOfCmds  is allowed.

– An array containing the name of each command your
plugin implements and a Boolean value that indicates
whether your plugin takes an argument.

A given device might have multiple plugins installed. If so, the
resulting pull-down list contains the union of all commands
supported by all of the plugins installed on the device. For this
reason, you should make sure the command names you supply are
unique. You also should make sure the names are as brief as
possible, as only 15 characters are allowed for the name.

Responding to scptLaunchCmdExecuteCmd

The scptLaunchCmdExecuteCmd  launch code is sent when the
login script is being executed. That is, the user has attempted to
connect to the network service specified in the Network preferences
panel, and the panel is executing the script to perform
authentication.

The scptLaunchCmdExecuteCmd  parameter block is a structure
of type PluginExecCmdType . It contains:

• The name of the command to be executed

• The command argument, if it takes one

• A pointer to a network interface function

• A handle to information specific to the current connection

Your plugin should execute the specified command. When a plugin
is launched with this code, it is launched as a subroutine and as
such does not have access to global variables. Also keep in mind
that the network library and a connection application (such as the
HotSync application) are already running when the plugin is
launched. Thus, available memory and stack space are extremely
limited.

To perform most of its work, the plugin command probably needs
access to the network interface (such as SLIP or PPP) specified for
the selected network service. For this reason, the plugin is passed a
pointer to a callback function defined by the network interface. The
plugin should call this function when it needs to perform the
following tasks:
Palm OS Programmer’s Companion 297



Network Communicat ion
Net Library
• Read a number of bytes from the network

• Write a number of bytes to the network

• Get the user’s name and password information

• Write a string to the connection log

• Prompt the user for information

• Check to see if the user pressed the Cancel button

• Display a form

• Obtain access to the serial library

The callback’s prototype is defined by
ScriptPluginSelectorProc . It takes as arguments the handle
to the connection-specific data passed in with the launch code, the
task that the network interface should perform (specified as a
pluginNetLib ... constant), followed by a series of parameters
whose interpretations depend on which task is to be performed.

For example, the following code implements the command “Send
Uname”, which sends the user’s name to the host computer.

Listing 11.1 Simple Script Plugin Command

#define  pluginSecondCmd "Send Uname"

UInt32 PilotMain(UInt16 cmd, void *cmdPBP,
UInt16 launchFlags) {
PluginExecCmdPtr execPtr;
UInt32 error = success;
Int16 dataSize = 0;
Char* dataBuffer = NULL;
ScriptPluginSelectorProcPtr selectorTypeP;

if (cmd == scptLaunchCmdExecuteCmd) {
execPtr = (PluginExecCmdPtr)cmdPBP;
selectorTypeP = execPtr->procP->selectorProcP;

dataBuffer =
MemPtrNew(pluginMaxLenTxtStringArg+1);

if (!dataBuffer) {
return failure;
298 Palm OS Programmer’s Companion



Network Communicat ion
Net Library
}
MemSet(dataBuffer,pluginMaxLenTxtStringArg+1,0);

if (!StrCompare(execPtr->commandName,
pluginSecondCmd)) {

/* get the user name from the network
interface */

error = (selectorTypeP)(execPtr->handle,
pluginNetLibGetUserName, (void*)dataBufferP,

&dataSize, 0,
NULL);

if (error) goto Exit;

dataSize = StrLen((Char*)dataBufferP);

/* have the network interface send the user name
to the host */

error = (selectorTypeP)(execPtr->handle,
pluginNetLibWriteBytes, (void*)dataBufferP,

&dataSize, 0,
NULL);

return error;
}

}

If your command needs to interact with the user, it must do so
through the network interface. When the connection attempt is
taking place, the user sees either the Network preferences panel or
the HotSync application. Your plugin does not have control of the
screen, so you cannot simply display a form. You have two options:

• The network interface can display a prompt for you and
return the value that the user enters in response. It can also
query the Network preferences panel to see if the user
cancelled the connection attempt.

• If you want to do more than simply display a prompt or
check the cancel status, you can use the command
Palm OS Programmer’s Companion 299



Network Communicat ion
Internet Library
pluginNetLibCallUIProc to display a form and call your
own user interface routine.

To use pluginNetLibCallUIProc , you must do the following:

1. Initialize the form using a form resource that you’ve created.

2. Create a struct that contains your form’s handle and any
other values that you are going to need in your user interface
routine.

3. Call the network interface’s callback function with the
pluginNetLibCallUIProc  command, the structure with
the form’s handle and other pertinent information, and the
address of a function in your plugin that will perform the
user interface routine. This function should take one
argument—the struct you’ve passed to the network
interface—and return void .

4. When the call to the network interface returns, close the
form.

For an example of using pluginNetLibCallUIProc , see the
functions WaitForData  and promptUser  in the example code
ScriptPlugin.c .

Internet Library
The Internet library provides Palm applications easy access to
World Wide Web documents. The Internet library uses the net
library for basic network access and builds on top of the net library's
socket concept to provide a socket-like API to higher level internet
protocols like HTTP and HTTPS.

Using the Internet library, an application can access a web page with
as little as three calls (INetLibURLOpen , INetLibSockRead , and
INetLibSockClose ). The Internet library also provides a more
advanced API for those applications that need finer control.

NOTE: The information in this section applies only to version 3.2
or later of the Palm OS on Palm VII devices. These features are
implemented only if the Wireless Internet Feature Set is present.
300 Palm OS Programmer’s Companion



Network Communicat ion
Internet Library
WARNING! In future OS versions, Palm, Inc. does not intend to
support or provide backward compatibility for the Internet library
API.

The Internet library is implemented as a system library that is
installed at runtime and doesn’t have to be present for the system to
work properly.

This section describes how to use the Internet library in your
application. It covers:

• System Requirements

• Initialization and Setup

• Accessing Web Pages

• Asynchronous Operation

• Using the Low Level Calls

• Cache Overview

• Internet Library Network Configurations

System Requirements
The Internet library is available only on version 3.2 or later of the
Palm OS on Palm VII devices. Before making any Internet library
calls, ensure that the Internet library is available. You can be sure it
is available by using the following FtrGet  call:

err = FtrGet(inetLibFtrCreator,
inetFtrNumVersion, &value);

If the Internet library is installed, the value  parameter will be non-
zero and the returned error will be zero (for no error).

When the Internet library is present and running, it requires an
estimated additional 1 KB of RAM, beyond the net library. More
additional memory is used for the security library, if that is used
(when accessing secure sites), and for opening a cache database, if
that is used.
Palm OS Programmer’s Companion 301



Network Communicat ion
Internet Library
Initialization and Setup
Before using the Internet library, an application must call
SysLibFind  to obtain a library reference number, as follows:

err = SysLibFind("INet.lib", &libRefNum)

Next, it must call INetLibOpen  to allocate an inetH  handle. The
inetH  handle holds all application specific environment settings
and each application that uses the Internet library gets its own
private inetH handle. Any calls that change the default behavior of
the Internet library affect environment settings stored in the
application's own inetH  structure, so these changes will not affect
other applications that might be using the Internet library at the
same time.

INetLibOpen  also opens the net library for the application. In
addition, the application can tell INetLibOpen the type of network
service it prefers: wireline or wireless. INetLibOpen  queries the
available network interfaces and attaches the appropriate one(s) for
the desired type of service. When the application calls
INetLibClose , the previous interface configuration is restored.
For more information on configurations, see the section “Internet
Library Network Configurations” on page 306.

The Internet library gets some of its default behavior from the
system preferences database, and some of these preference settings
are made by the user via the Wireless preferences panel. The
preferences set by this panel include the proxy server to use and a
setting that determines whether or not the user is warned when the
device ID is sent. Other settings stored in the preferences database
come from Internet library network configurations (see “Internet
Library Network Configurations” on page 306). All these settings
can be queried and/or overridden by each application through the
INetLibSettingGet  and INetLibSettingSet  calls. However,
any changes made by an application are not stored into the system
preferences, but only take effect while that inetH  handle is open.

Accessing Web Pages
In the Palm.Net environment, all HTML documents are
dynamically compressed by the Palm Web Clipping Proxy server
before being transmitted to the Palm device.
302 Palm OS Programmer’s Companion



Network Communicat ion
Internet Library
The procedure for reading a page from the network operates as
follows. First, the application passes the desired URL to the
INetLibURLOpen  routine, which creates a socket handle to access
that web page. This routine returns immediately before performing
any required network I/O. Then the application calls
INetLibSockRead  to read the data, followed by
INetLibSockClose  to close down the socket.

Note that if no data is available to read immediately,
INetLibSockRead  blocks until at least one byte of data is
available to be read. To implement asynchronous operation using
events, see the next section, Asynchronous Operation.

If an application requires finer control over the operation, it can
replace the call to INetLibURLOpen with other lower-level Internet
library calls (INetLibSockOpen , INetLibSockSettingSet ,
etc.) that are described in the section “Using the Low Level Calls”
on page 305.

Asynchronous Operation
A major challenge in writing an Internet application is handling the
task of accessing content over a slow network while still providing
good user-interface response. For example, a user should be able to
scroll, select menus, or tap the Cancel button in the middle of a
download of a web page.

To easily enable this type of functionality, the Internet library
provides the INetLibGetEvent  call. This call is designed to
replace the EvtGetEvent  call that all traditional, non-network
Palm applications use. The INetLibGetEvent call fetches the next
event that needs to be processed, whether that event is a user-
interface event like a tap on the screen, or a network event like some
data arriving from the remote host that needs to be read. If no
events are ready, INetLibGetEvent  automatically puts the Palm
device into low-power mode and blocks until the next event occurs.

Using INetLibGetEvent  is the preferred way of performing
network I/O since it maximizes battery life and user-interface
responsiveness.

With INetLibGetEvent , the process of accessing a web page
becomes only slightly more complicated. Instead of calling
Palm OS Programmer’s Companion 303



Network Communicat ion
Internet Library
INetLibSockRead  immediately after INetLibURLOpen , the
application should instead return to its event loop and wait for the
next event. When it gets a network event that says data is ready at
the socket, then it should call INetLibSockRead .

There are two types of network events that INetLibGetEvent can
return in addition to the standard user-interface events. The first
event is a status change event (inetSockStatusChangeEvent ).
This event indicates that the status of a socket has changed and the
application may want to update its user interface. For example,
when calling INetLibURLOpen  to access an HTTP server, the
status on the socket goes from “finding host,” to “connecting with
host,” to “waiting for data,” to “reading data,” etc. The event
structure associated with an event of this type contains both the
socket handle and the new status so that the application can update
the user interface accordingly.

The second type of event that INetLibGetEvent  can return is a
data-ready event (inetSockReadyEvent ). This event is returned
when data is ready at the socket for reading. This event tells the
application that it can call INetLibSockRead  and be assured that
it will not block while waiting for data to arrive.

The general flow of an application that uses the Internet library is to
open a URL using INetLibURLOpen , in response to a user
command. Then it repeatedly calls INetLibGetEvent  to process
events from both the user interface and the newly created socket
returned by INetLibURLOpen . In response to
inetSockStatusChangeEvent  events, the application should
update the user interface to show the user the current status, such as
finding host, connecting to host, reading data, etc. In response to
inetSockReadyEvent  events, the application should read data
from the socket using INetLibSockRead . Finally, when all
available data has been read (INetLibSockRead  returns 0 bytes
read), the application should close the socket using
INetLibSockClose .

Finally, the convenience call INetLibSockStatus  is provided so
that an application can query the status of a socket handle. This call
never blocks on network I/O so it is safe to call at any time. It not
only returns the current status of the socket but also whether or not
it is ready for reading and/or writing. It essentially returns the same
304 Palm OS Programmer’s Companion



Network Communicat ion
Internet Library
information as conveyed via the events inetSockReadyEvent
and inetSockStatusChangeEvent . Applications that don't use
INetLibGetEvent  could repeatedly poll INetLibSockStatus
to check for status changes and readiness for I/O, though polling is
not recommended.

Using the Low Level Calls
Applications that need finer control than INetLibURLOpen
provides can use the lower level calls of the Internet library. These
include INetLibSockOpen , INetLibSockConnect ,
INetLibSockSettingSet , INetLibSockHTTPReqCreate ,
INetLibSockHTTPAttrGet , INetLibSockHTTPAttrSet , and
INetLibSockHTTPReqSend .

A single call to INetLibURLOpen  for an HTTP resource is
essentially equivalent to this sequence: INetLibSockOpen ,
INetLibSockConnect , INetLibSockHTTPReqCreate , and
INetLibSockHTTPReqSend . These four calls provide the
capability for the application to access non-standard ports on the
server (if allowed), to modify the default HTTP request headers,
and to perform HTTP PUT and POST operations. The only calls here
that actually perform network I/O are INetLibSockConnect ,
which establishes a TCP connection with the remote host, and
INetLibSockHTTPReqSend , which sends the HTTP request to the
server.

INetLibSockHTTPAttrSet  is provided so that the application
can add or modify the default HTTP request headers that
INetLibSockHTTPReqCreate  creates.

INetLibSockSettingSet  allows an application finer control
over the socket settings.

Finally, the routine INetLibURLCrack is provided as a convenient
utility for breaking a URL into its component parts.

Cache Overview
The Internet library maintains a cache database of documents that
have been downloaded. This is an LRU (Least Recently Used) cache;
that is, the least recently used items are flushed when the cache fills.
Whether or not a retrieved page is cached is determined by a flag
Palm OS Programmer’s Companion 305



Network Communicat ion
Internet Library
(inetOpenURLFlagKeepInCache ) set in the socket or by
INetLibURLOpen . Another flag
(inetOpenURLFlagLookInCache ) determines if the Internet
library should check the cache first when retrieving a URL.

The same cache database can be used by any application using the
Internet library, so that every application can share the same pool of
prefetched documents. Alternately, an application can use a
different cache database. The cache database to use is specified in
the INetLibOpen  call.

Generally, a cached item is stored in one or more database records in
the same format as it arrives from the server.

In the cache used by the Clipper application, each record includes a
field that contains the “master” URL of the item. This field is set to
the URL of the active PQA, so all pages linked from one PQA have
the same master URL. This facilitates finding all pages in a
hierarchy to build a history list.

The Internet library maintains a list of items in the cache. You can
retrieve items in this list, or iterate over the whole list, by calling
INetLibCacheList . You can retrieve a cached document directly
by using INetLibCacheGetObject .

You can check if a URL is cached by calling INetLibURLGetInfo .

Internet Library Network Configurations
The Internet library supports network configurations. A
configuration is a specific set of values for several of the Internet
library settings (from the INetSettingEnum  type).

The Internet library keeps a list of available configurations and
aliases to them. There are three built-in configurations:

• A wireless configuration that uses the Palm.Net wireless
system and the Palm Web Clipping Proxy server.

• A wireline configuration that uses the wireline network
configuration specified in the Network preferences panel and
the Palm Web Clipping Proxy server.

• A generic configuration that uses the wireline network
configuration specified in the Network preferences panel and
no proxy server.
306 Palm OS Programmer’s Companion



Network Communicat ion
Internet Library
You can also define your own configuration by modifying an
existing one and saving it under a different name.

The Internet library also defines several configuration aliases (see
“Configuration Aliases” on page 1144 in the Palm OS SDK
Reference). An alias is a configuration name that simply points to
another configuration. You can specify an alias anywhere in the API
you would specify a configuration. This facilitates easy re-
assignment of the built-in configurations and eliminates having
duplicate settings. You assign an alias by using
INetLibConfigAliasSet  and can retrieve an alias by using
INetLibConfigAliasGet .

For example, to change the default configuration used by the
Internet library for a particular kind of connection, you can set up
the appropriate values for a connection, save the configuration, and
then set the Internet library’s default alias configuration to point to
your custom configuration. When an application specifies which
configuration it wants to use, if it specifies the alias, it will use the
custom settings.

If you use configurations at all, it will probably be to specify a
specific configuration when opening the Internet library via
INetLibOpen . The Internet library also contains an API to allow
you to manipulate configurations in your application, but doing so
is rare. You can list the available configurations
(INetLibConfigList ), get a configuration index
(INetLibConfigIndexFromName ), select
(INetLibConfigMakeActive ) the Internet library network
configuration you would prefer to use (wireless, wireline, etc.),
rename existing configurations (INetLibConfigRename ), and
delete configurations (INetLibConfigDelete ).

The configuration functions are provided primarily for use by
Preferences panels while editing and saving configurations. The
general procedure is to make the configuration active that you want
to edit, set the settings appropriately, then save the configuration
using INetLibConfigSaveAs . Note that configuration changes
are not saved after the Internet library is closed, unless you call
INetLibConfigSaveAs .
Palm OS Programmer’s Companion 307



Network Communicat ion
Summary of Network Communication
Summary of Network Communication
Net Library Functions

Library Open and Close

NetLibClose
NetLibConnectionRefresh
NetLibFinishCloseWait

NetLibOpen
NetLibOpenCount

Socket Creation and Deletion

NetLibSocketClose NetLibSocketOpen

Socket Options

NetLibSocketOptionGet NetLibSocketOptionSet

Socket Connections

NetLibSocketAccept
NetLibSocketAddr
NetLibSocketBind

NetLibSocketConnect
NetLibSocketListen
NetLibSocketShutdown

Send and Receive Routines

NetLibDmReceive
NetLibReceive
NetLibReceivePB

NetLibSend
NetLibSendPB

Utilities

NetHToNL
NetHToNS
NetLibAddrAToIN
NetLibAddrINToA
NetLibGetHostByAddr
NetLibGetHostByName
NetLibGetMailExchangeByName

NetLibGetServByName
NetLibMaster
NetLibSelect
NetLibTracePrintF
NetLibTracePutS
NetNToHL
NetNToHS
308 Palm OS Programmer’s Companion



Network Communicat ion
Summary of Network Communication
Setup

NetLibIFAttach
NetLibIFDetach
NetLibIFDown
NetLibIFGet
NetLibIFSettingGet

NetLibIFSettingSet
NetLibIFUp
NetLibSettingGet
NetLibSettingSet

Network Utilities

NetUReadN NetUTCPOpen
NetUWriteN

Internet Library Functions

Library Open and Close

INetLibClose INetLibOpen

Settings

INetLibSettingGet INetLibSettingSet

Event Management

INetLibGetEvent

High-Level Socket Calls

INetLibSockClose
INetLibSockRead

INetLibURLOpen

Low-Level Socket Calls

INetLibSockConnect
INetLibSockOpen
INetLibSockSettingGet

INetLibSockSettingSet
INetLibSockStatus

Net Library Functions
Palm OS Programmer’s Companion 309



Network Communicat ion
Summary of Network Communication
HTTP Interface

INetLibSockHTTPAttrGet
INetLibSockHTTPAttrSet

INetLibSockHTTPReqCreate
INetLibSockHTTPReqSend

Utilities

INetLibCheckAntennaState
INetLibURLCrack
INetLibURLGetInfo

INetLibURLsAdd
INetLibWiCmd

Cache Interface

INetLibCacheGetObject INetLibCacheList

Configuration

INetLibConfigAliasGet
INetLibConfigAliasSet
INetLibConfigDelete
INetLibConfigIndexFromName

INetLibConfigList
INetLibConfigMakeActive
INetLibConfigRename
INetLibConfigSaveAs

Internet Library Functions
310 Palm OS Programmer’s Companion



12
Internet and
Messaging
Applications

NOTE: The information in this chapter currently applies only to
the system software installed on the Palm VII™ device.

The Palm OS® version 3.2 provides support for wireless Internet
access and messaging via the Palm.Net wireless network. This
chapter discusses the following topics:

• Overview of the Palm.Net System

• System Version Checking

• Using Clipper to Display Information

• Launching Other Applications from Clipper

• Sending Messages

• New keyDownEvent Key Codes

• Over the Air Characters

Most of the information in this chapter applies to wireline connects
as well as wireless connections. It is possible for developers to
connect to the Palm.Net network via a wired modem through an
Internet Service Provider for testing, though normal users will
access Palm.Net via the built-in wireless modem.

For more information about Palm query applications and content
style guidelines for the Palm VII device, refer to the Web Clipping
Developer's Guide.
Palm OS Programmer’s Companion 311



Internet and Messaging Appl icat ions
Overview of the Palm.Net System
Overview of the Palm.Net System
Before developing content and applications for the Palm VII device,
it’s useful to understand the whole Palm.Net system. The Palm VII
device is just one part of a system that delivers data wirelessly from
the Internet to the Palm device.

The system is designed to work differently from a web browser
application running on a desktop computer. The Palm.Net system is
designed to best support access to real-time data, not casual
browsing. Browsing is possible, but the increased cost and volume
of data involved with visiting most standard web sites makes it
impractical over a wireless network.

Typical scenarios involve users accessing the following kinds of
information on the Internet: news, sports scores, weather, traffic
reports, driving directions, airline schedules and flight information,
stock quotes, hotel and restaurant information, email, etc.

Constraints on Palm wireless applications include the high cost to
users of radio usage, low bandwidth, and increased battery
consumption when the radio is on. Palm designed the system to
make the best use of resources given these constraints. You must
also keep these constraints in mind when designing applications
that use the wireless capabilities of the unit.

In particular, note the pricing model for the wireless service. Users
are charged a flat monthly fee for a modest number of bytes
transmitted and received. Once the limit is exceeded, users are
charged for each additional byte sent or received by their Palm
device. It’s imperative that applications using the wireless services
minimize the number of bytes sent and received, to avoid
contributing to large airtime charges for users.

Content developers wishing to customize web pages for optimal
display on Palm VII devices should follow the design guidelines
described in the Web Clipping Developer's Guide. A web site that
conforms to these style guidelines and contains the
<META NAME="PalmComputingPlatform" CONTENT="True">
HTML tag is considered Palm friendly.
312 Palm OS Programmer’s Companion



Internet and Messaging Appl icat ions
Overview of the Palm.Net System
NOTE: The Internet applications described in this chapter rely
on the Internet library (INetLib) for wireless connectivity functions,
and the Internet library uses the net library (NetLib). Applications
cannot directly use the net library to make wireless connections.

Palm Query Applications
The primary mechanism that Palm has provided for users to
interact with the WWW (World Wide Web) is the Palm query
application (PQA). Palm query applications encapsulate locally
stored HTML content, possibly including one or more query forms,
through which the user can submit requests for information from
the WWW. Returned data, called web clippings, are displayed by
the web clipping viewer application (called Clipper here) that runs
on the Palm device.

Note that Clipper does not appear as a separate application in the
Launcher; it is invoked automatically when a query application is
launched. End users don’t see the term “Clipper” anywhere in the
user interface or user documentation, so you should not confuse
them by using this term in your application documentation, readme
files, or help screens.

Palm query applications are created by the Query Application
Builder program that runs on a desktop computer. This program
translates one or more pages of HTML content into a single compact
database (.pqa file) that the user installs on the Palm device.

When creating the .pqa file, the Query Application Builder
translates HTML into a compressed format. The Clipper application
works with this compressed format, rather than HTML directly. The
reason for this is that HTML is an inefficient format for the
transmission of data over the network and storage of information.
Compression minimizes the amount of information sent over the
radio and reduces the size of query applications stored on the Palm
device.

GIF and JPEG images incorporated into source HTML files are
converted to the Palm bitmap format (2-bit graphics) before being
stored in the query application file.
Palm OS Programmer’s Companion 313



Internet and Messaging Appl icat ions
Overview of the Palm.Net System
Palm.Net System Overview
The physical Palm.Net network is illustrated in Figure 12.1.

Figure 12.1 Palm.Net Network

The Palm VII device communicates via radio modem to a nearby
BellSouth Wireless Data network base station. From there, data is
sent over a private link to the Palm Web Clipping Proxy server in
the Palm data center. The proxy server interprets user requests and
passes them to other computers on the Internet, using standard
HTTP protocols, to handle as appropriate.

Responses are sent back to the proxy server, which communicates
them to the Bell South wireless network and back to the Palm VII
device via radio modem.
314 Palm OS Programmer’s Companion



Internet and Messaging Appl icat ions
Overview of the Palm.Net System
The wireless radio link operates at approximately 8 kbps, so is best
suited for exchanging small amounts of information. After
accounting for headers, error correction, and other overhead, the
effective data throughput is roughly 2 kbps, so compactness is
critical.

Palm Web Clipping Proxy Server

The Palm Web Clipping Proxy server is a key part of the system.
This server is responsible for accepting and responding to queries
sent by the Palm VII device.

The server supports three high-level protocols: HTTP, HTTPS, and
the Palm messaging protocol (used by the iMessenger application).
Requests using HTTP and HTTPS are forwarded to the Internet.
Requests using the messaging protocol are forwarded to the Palm
messaging server, which handles email communication to the
Internet.

UDP

One way that Palm optimizes the limited network bandwidth is to
use UDP (User Datagram Protocol). All communications between
the Palm VII device and the wireless network use UDP. This
transmission protocol is extremely efficient and lightweight,
resulting in the exchange of the fewest packets possible over the
wireless network. Often requests and responses require just a single
packet of data each. This is much more efficient than the relatively
verbose TCP (Transmission Control Protocol). Using UDP decreases
user airtime costs because fewer packets are required for each
request and response.

UDP does not normally function as a reliable protocol, however, the
wireless connection between the Palm device and the BellSouth
Wireless Data network has guaranteed delivery and reliability built
into it via other mechanisms, so there is no need for the extra
overhead of a full connection-oriented protocol such as TCP.

WWW requests that are passed to the Internet by the proxy server
use TCP to guarantee reliability over the Internet.

Note that in a debugging wired connection scenario, TCP is used
instead of UDP between the Palm device and the proxy server.
Palm OS Programmer’s Companion 315



Internet and Messaging Appl icat ions
Overview of the Palm.Net System
Compressed HTML

Another way that Palm efficiently uses the limited bandwidth of the
Palm.Net system is to compress HTML.

Web clippings are rendered on the Palm VII device by the Clipper
application. Clipper renders compressed HTML data. Both the
query applications and WWW data returned from the Internet are
compressed.

• When creating Palm query applications, the Query
Application Builder program compresses HTML content and
combines multiple HTML pages and images into a single
query application.

• All HTML information returned to the Palm device from the
Internet is dynamically compressed by the Palm Web
Clipping Proxy server before transmission through the
wireless network to the Palm device.

It’s important to note that the Palm device accesses standard HTML
data that resides on standard HTML web servers on the Internet.
The compression by the proxy server is transparent to the user and
the web server on the Internet.

If a web page that is not Palm-friendly is browsed, the proxy server
removes images, scripting code, Java code, frames, and other non-
supported elements before sending the content to the Palm device.
Additionally, the content is truncated to prevent large amounts of
unexpected data from being transmitted. The user can request more
data as desired.

Security

All wired parts of the network support security via the SSL (Secure
Sockets Layer) protocol widely used by servers and browsers on the
Internet. However, SSL is impractical to run over a low bandwidth
wireless network because it is quite verbose.

Palm implemented a level of security for the wireless portion of the
network that is equivalent to the 128-bit SSL encryption algorithms,
but optimized for use on a wireless network. The wireless part of
the network is protected by a security system that includes
encryption, message integrity checking, and server authentication.
316 Palm OS Programmer’s Companion



Internet and Messaging Appl icat ions
System Version Checking
Message encryption is done via an elliptic curve cryptography
engine supplied by Certicom Corporation. Message integrity
checking protects against transmission errors or message
manipulation. Server authentication prevents the wireless session
between the Palm device and the proxy server from being hijacked
or spoofed.

Note that despite the optimized security scheme, secure
transmissions inherently increase the size of the data packet,
slowing its transmission over the network relative to unsecure
transmissions.

System Version Checking
Before using any special features of the operating system for the
Palm VII device, you must check to ensure they are present. You can
ensure that you are running on a device that supports the wireless
internet access features by checking for the existence of the Clipper
and iMessenger applications. Here’s an example of how to check for
Clipper:

DmSearchStateType searchState;
UInt16* cardNo;
LocalID* dbID;
err = DmGetNextDatabaseByTypeCreator(true,
&searchState, sysFileTApplication,
sysFileCClipper, true, &cardNo, &dbID);

If Clipper is not present, the
DmGetNextDatabaseByTypeCreator  routine returns an error.
To check for iMessenger, you can use the creator type
sysFileCMessaging .

For more information on checking system compatibility, see the
appendix “Compatibility Guide” starting on page 1201.
Palm OS Programmer’s Companion 317



Internet and Messaging Appl icat ions
Using Clipper to Display Information
Using Clipper to Display Information
You can use launch codes to open Clipper and display content.

To launch Clipper and display a PQA, use the launch code
sysAppLaunchCmdOpenDB . You pass as parameters the database
id and card number of the PQA to display. This is the same
mechanism used by the Launcher to “launch” data files.

To launch Clipper and display any URL, use the launch code
sysAppLaunchCmdGoToURL. You pass as a parameter a pointer to
the URL string. An example of how to use this launch code is shown
in Listing 12.1.

IMPORTANT: Keep in mind that browsing web sites that are
complex or not Palm-friendly may possibly result in higher latency
and airtime charges for the user. If a web page that is not Palm-
friendly is browsed, the proxy server removes images, scripting
code, Java code, frames, and other non-supported elements
before sending the content to the Palm device.

Listing 12.1 Launching Clipper with a URL

Err GoToURL(Char* origurl)
{ // parameter is ptr to URL string

Err err;
Char* url;
DmSearchStateType searchState;
UInt16* cardNo;
LocalID* dbID;

// make a copy of the URL, since the OS will
free

// the parameter once Clipper quits
url = MemPtrNew(StrLen(origurl));
if (!url) return sysErrNoFreeRAM;
StrCopy(url, origurl);
MemPtrSetOwner(url, 0);

// find clipper and launch it
318 Palm OS Programmer’s Companion



Internet and Messaging Appl icat ions
Launching Other Applications from Clipper
err = DmGetNextDatabaseByTypeCreator (true,
&searchState, sysFileTApplication,
sysFileCClipper, true, &cardNo, &dbID);

if (err) { // Clipper is not present
FrmAlert(NoClipperAlert);
MemPtrFree(url);

}
else

err =
SysUIAppSwitch(cardNo,dbID,sysAppLaunchCmdGoToURL,
url);

return err; // 0 means no error
}

Launching Other Applications from Clipper
Clipper can launch other applications via two special types of URLs:
palm and palmcall . In a query application, you might want to use
the palmcall  URL to hand some data to a different application to
process and/or display while Clipper is running. This would be
useful for graphing a set of numbers, for example.

Both of these URL types take a URL string in the following form:

palm: cccc . tttt ?params

or

palmcall: cccc . tttt ?params

cccc  is a four character creator name and tttt  is a four character
database type. These parts identify the application to launch. After
the question mark (?), the params  portion of the string can be any
text you want. The entire URL string is passed to the application to
use in any manner.

Here’s an example of an HTML anchor that uses the palm URL type
to link to the Memo Pad application:
Palm OS Programmer’s Companion 319



Internet and Messaging Appl icat ions
Sending Messages
<A HREF="palm:memo.appl">Memo Pad</A>

Use the palm  URL to cause Clipper to launch another application
with the SysUIAppSwitch routine. This causes Clipper to quit
before the other application is launched.

Use the palmcall  URL to cause Clipper to sublaunch another
application with the SysAppLaunch routine. Clipper stays in the
background and resumes execution when the other application
quits. It’s important to note that in this situation, the sublaunched
application does not have access to its global variables or to code
outside segment 0 (in a multi-segment application).

The Clipper application handles these URLs by sending the
sysAppLaunchCmdURLParams  launch code to the specified
application. The parameter block for this launch code is a pointer to
the URL string.

Sending Messages
You can send messages via the built-in iMessenger application in 3
ways:

• Use the standard mailto  URL in Clipper, passing an email
address, for example, “mailto:info@palm.com ”. This
launches iMessenger, passing the email address for the “To”
field. Optionally, you can include the subject
(“mailto:info@palm.com?subject=foo ”) and/or body
(“mailto:info@palm.com?subject=foo&body=bar ”)
text in the URL. Internally, this launches iMessenger using
the next method.

• Use the sysAppLaunchCmdAddRecord launch code to
launch iMessenger with its editor open (optionally filling in
some of the fields via the passed parameter block). This
allows the user to edit the email. To make iMessenger display
the message in its editor, set the edit  field in the parameter
block to true .

• Use the sysAppLaunchCmdAddRecord launch code to
silently add an item (the email) to the iMessenger outbox
database. You must pass all the needed information in the
parameter block. To prevent iMessenger from displaying the
320 Palm OS Programmer’s Companion



Internet and Messaging Appl icat ions
New keyDownEvent Key Codes
message in its editor, set the edit  field in the parameter
block to false .

When launched via the sysAppLaunchCmdAddRecord  launch
code, the iMessenger application returns an error code, or 0 if there
was no error.

To send a launch code to the iMessenger application, you will need
obtain its database id. You can use
DmGetNextDatabaseByTypeCreator  and pass the constant
sysFileCMessaging  for the creator  parameter.

Note that adding an item to the iMessenger outbox does not
actually send the message over the radio. It simply stores the
message in the outbox until the user later opens iMessenger and
chooses to send queued messages. This always gives the user
control over when the radio is used.

New keyDownEvent Key Codes
The OS on the Palm VII device provides special keyDownEvent
virtual key codes to support the wireless capabilities. These include:

• vchrHardAntenna , which signals that the user has raised
the antenna, activating the radio

• vchrRadioCoverageOK , which signals that the unit is
within radio coverage following a coverage check

• vchrRadioCoverageFail , which signals that the unit is
outside radio coverage following a coverage check, and thus
cannot communicate with the Palm.Net system

Virtual key codes are passed in the chr  field of a keyDownEvent
data block, with the commandKeyMask bit set in the modifiers
field, as described in the section “keyDownEvent” on page 125 of
the Palm OS SDK Reference.

Normally, you ignore these events in your application event
handler, and let the system event handler handle them. For
example, the vchrHardAntenna event causes the system to invoke
the Launcher and switch to the Palm.Net category. If you want to do
something different in your application, you must trap and handle
the event in your application event handler.
Palm OS Programmer’s Companion 321



Internet and Messaging Appl icat ions
Over the Air Characters
Alternatively, if you want your application to have control over the
antenna (avoiding having the system switch to the Launcher on a
vchrHardAntenna event), you can open the Internet library when
your application starts, by calling INetLibOpen . You need to open
the Internet library with the default or wireless configuration. When
your application exits, you must close the Internet library by calling
INetLibClose . For more information about using the Internet
library, see Chapter 11, “Network Communication.”

Over the Air Characters
One of the overriding user interface design goals of the Palm VII
system is to always give the user control when making a wireless
transaction, partly because of the costs associated with doing so. In
order that the user can recognize when an action causes a wireless
transaction, you must use a special character in user interface
buttons that cause wireless transactions. This alerts the user that
tapping the button will result in a wireless transaction and its
associated cost and latency. The user must never be surprised that a
wireless transaction has occurred as a result of an action they
initiated.

Applications that cause data to be transmitted from the Palm VII
device must use two special characters in their user interface
buttons, as shown in Figure 12.2.

Figure 12.2 Over the Air Characters

If you have a button, that when tapped, causes data to be
transmitted, the button text must end with the “Over the air”
character (chrOta ). This alerts the user that tapping the button will
cause data transmission and incur possible airtime charges.

Over the air Over the air secure
322 Palm OS Programmer’s Companion



Internet and Messaging Appl icat ions
Over the Air Characters
If you have a button, that when tapped, causes data to be
transmitted securely, the button text must end with the “Over the
air secure” character (chrOtaSecure ). This alerts the user that
tapping the button will cause secure data transmission and incur
possible airtime charges.

Note that the Clipper application automatically adds these special
characters when rendering remote hyperlinks or buttons. You only
need to explicitly add these characters if you are building an
application that doesn’t use this capability of Clipper.
Palm OS Programmer’s Companion 323





13
Localized
Applications
When you write an application (or any other type of software) that
is going to be localized, you need to take special care when working
with characters, strings, numbers, and dates, as different countries
represent these items in different ways. This chapter describes how
to write code for localized applications, focusing on the text
manager and international manager, which were introduced in
Palm OS® version 3.1, and the overlay manager, which is introduced
in Palm OS version 3.5. The chapter covers:

• Localization Guidelines

• Using Overlays to Localize Resources

• Text Manager and International Manager

• Characters

• Strings

• Dates

• Numbers

• Compatibility Information

• Notes on the Japanese Implementation

• Summary of Localization

This chapter does not cover how to actually perform localization of
resources. For more information on this subject, see your tools
documentation.
Palm OS Programmer’s Companion 325



Local ized Appl icat ions
Localization Guidelines
Localization Guidelines
When you start planning for the localized version of your
application, follow these guidelines:

• If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

– extra space for strings

– larger dialogs than the English version requires

• Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language. See the section “Strings” in this
chapter for further discussion.

• Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a
particular substring, or any other attribute that might
disappear in translation.

• Use the functions described in this chapter when working
with characters, strings, numbers, and dates.

• Consider using string templates as described in the section
“Dynamically Determining a String’s Contents” in this
chapter. Use as many parameters as possible to give
localizers greater flexibility. Avoid building sentences by
concatenating substrings together, as this often causes
translation problems.

• Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm OS device.

• Remember that user interface elements such as lists, fields,
and tips scroll if you need more space.

The chapter “Good Design Practices” provides further user
interface guidelines.

Using Overlays to Localize Resources
Palm OS version 3.5 adds support for localizing resource databases
through overlays. Localization overlays provide a method for
localizing a software module without requiring a recompile or
326 Palm OS Programmer’s Companion



Local ized Appl icat ions
Using Overlays to Localize Resources
modification of the software. Each overlay database is a separate
resource database that provides an appropriately localized set of
resources for a single software module (the PRC file, or base
database) and a single target locale (language and country). Note
that each Palm OS device supports a single locale.

No requirements are placed on the base database, so for example,
third parties can construct localization overlays for existing
applications without forcing any modifications by the original
application developer. In rare cases, you might want to disable the
use of overlays to prevent third parties from creating overlays for
your application. To do so, you should include an 'xprf'=0
resource (symbolically named sysResTExtPrefs ) in the database
and set its disableOverlays  flag. This resource is defined in
UIResources.r .

An overlay database has the same creator as the base database, but
its type is 'ovly' , and a suffix identifying the target locale is
appended to its name. For example, Datebook.prc  might be
overlaid with a database named Datebook_jpJP , which indicates
that this overlay is for Japan. Each overlay database has an
'ovly' =1000 resource specifying the base database’s type, the
target locale, and information necessary to identify the correct
version of the base database for which it was designed.

The Palm OS SDK provides tools that you can use to create overlays.
See Using the PRC to Overlay Tool for more information on creating
overlays.

When a PRC file is opened on a system that supports overlays, the
overlay manager determines what the locale is for this device and it
looks for an overlay matching the base database and the locale. The
overlay database’s name must match the base database’s name, its
suffix must match the locale’s suffix, and it must have an
'ovly' =1000 resource that matches the base database. If the name,
suffix, and overlay resource are all correct, the overlay is opened in
addition to the PRC file. When the PRC file is closed, its overlay is
closed as well.

The overlay is opened in read-only mode and is hidden from the
programmer. When you request a database pointer, you’ll receive a
pointer to the base database, not the overlay. You can simply make
Palm OS Programmer’s Companion 327



Local ized Appl icat ions
Using Overlays to Localize Resources
resource manager calls like you normally would, and the resource
manager accesses the overlay where appropriate.

When accessing a localizable resource, do not use functions that
search for a resource only in the database you specify. For example:

// WRONG! searches only one database.
DmOpenRef dbP = DmNextOpenResDatabase(NULL);
UInt16 resIndex = DmFindResource(dpP, strRsc,

strRscID);
MemHandle resH = DmGetResourceIndex(dbP,

resIndex);

In the example above, dbP is a pointer to the most recently opened
database, which is typically the overlay version of the database.
Passing this pointer to DmFindDatabase  means that you are
searching only the overlay database for the resource. If you’re
searching for a non-localized resource, DmFindResource  won’t be
able to locate it. Instead, you should use DmGet1Resource , which
searches the most recently opened database and its overlay for a
resource, or DmGetResource , which searches all open databases
and their overlays.

// Right. DmGet1Resource searches both
// databases.
MemHandle resH = DmGet1Resource(strRsc,

strRscID);

// Or use DmGetResource to search all open
// databases.
MemHandle resH = DmGetResource(strRsc,

strRscID);

The data manager only opens an overlay if the resource database is
opened in read-only mode. If you open a resource database in read-
write mode, the associated overlay is not opened. What’s more, if
you modify the an overlaid resource in the base database, the
checksum in the overlay’s 'ovly' resource becomes invalid, which
prevents the overlay from being used at all. Thus if you change the
resource database, you must also change the overlay database.

You typically don’t work with the overlay manager directly
although it does provide a few public functions. One potentially
328 Palm OS Programmer’s Companion



Local ized Appl icat ions
Text Manager and International Manager
useful function is OmGetCurrentLocale , which returns a
structure identifying the locale on this device.

Text Manager and International Manager
The Palm OS provides two managers that help you work with
localized strings and characters. These managers are called the text
manager and the international manager.

Computers represent the characters in an alphabet with a numeric
code. The set of numeric codes for a given alphabet is called a
character encoding. Of course, a character encoding contains more
than codes for the letters of an alphabet. It also encodes
punctuation, numbers, control characters, and any other characters
deemed necessary. The set of characters that a character encoding
represents is called, appropriately enough, a character set.

As you know, different languages use different alphabets. Most
European languages use the Latin alphabet. The Latin alphabet is
relatively small, so its characters can be represented using a single-
byte encoding ranging from 32 to 255. On the other hand, Asian
languages such as Chinese, Korean, and Japanese require their own
alphabets, which are much larger. These larger character sets are
represented by a combination of single-byte and double-byte
numeric codes ranging from 32 to 65,535.

A given Palm OS device supports one language and one character
encoding to represent the characters required by that language.
Although the Palm OS supports multiple character encodings, a
given device uses only one of those encodings. For example, a
French device would probably use a character encoding similar to
the Microsoft® Windows® code page 1252 character encoding (an
extension of ISO Latin 1), while a Japanese device would use a
character encoding similar to Microsoft Windows code page 932 (an
extension of Shift JIS). Code page 932 is not supported on the French
device, and code page 1252 is not supported on the Japanese device
even though they both use the same version of Palm OS. No matter
what the encoding is on a device, Palm guarantees that the low
ASCII characters (0 to 0x7F) are the same. The exception to this rule
is 0x5C, which is a yen symbol on Japanese devices and a backslash
on all others.
Palm OS Programmer’s Companion 329



Local ized Appl icat ions
Text Manager and International Manager
The text manager allows you to work with text, strings, and
characters independent of the character encoding. If you use text
manager routines and don’t work directly with string data, your
code should work on any system, regardless of which language and
character encoding the device supports (as long as it supports the
text manager).

The international manager’s job is to detect which character
encoding a device uses and initialize the corresponding version of
the text manager. The international manager also sets system
features that identify which encoding and fonts are used. For the
most part, you don’t work with the international manager directly.

The text manager and international manager are supported starting
in Palm OS version 3.1. If your application should work on older
systems, you should test for the presence of these managers before
using text manager calls. Listing 13.1 shows how.

Listing 13.1 Testing for text and international managers

UInt32 intlMgrAttr;
if (FtrGet(sysFtrCreator, sysFtrNumIntlMgr,

&intlMgrAttr) != 0)
intlMgrAttr = 0;

if (intlMgrAttr & intlMgrExists) {
// If international manager exists, so does the
// text manager.
// Use text manager calls.

}

NOTE: You can still use the text manager and be compatible
with earlier releases if you link your application with the
PalmOSGlue library. See the section “Compatibility Information”
for more information.
330 Palm OS Programmer’s Companion



Local ized Appl icat ions
Characters
Characters
Depending on the device’s supported language, the Palm OS may
encode characters using either a single-byte encoding or a multi-
byte encoding. Because you do not know which character encoding
is used until runtime, you should never make an assumption about
the size of a character.

For the most part, your application does not need to know which
character encoding is used, and in fact, it should make no
assumptions about the encoding or about the size of characters.
Instead, your code should use text manager functions to manipulate
characters. This section describes how to work with characters
correctly in a localized application. It covers:

• Declaring Character Variables

• Using Character Constants

• Missing and Invalid Characters

• Retrieving a Character’s Attributes

• Virtual Characters

• Retrieving the Character Encoding

Declaring Character Variables
Declare all character variables to be of type WChar. WChar is a 16-bit
unsigned type that can accommodate characters of any encoding.
Don’t use Char . Char  is an 8-bit variable that cannot accommodate
larger character encodings. The only time you should ever use Char
is to pass a parameter to an older Palm OS function.

WChar ch; // Right. 16-bit character.
Char ch; // Wrong. 8-bit character.

When you receive input characters through the keyDownEvent ,
you’ll receive a WChar value. (That is, the data.keyDown.chr
field is a WChar.)

Even though character variables are now declared as WChar, string
variables are still declared as Char * , even though they may
contain multi-byte characters. See the section “Strings” for more
information on strings.
Palm OS Programmer’s Companion 331



Local ized Appl icat ions
Characters
Using Character Constants
Character constants are defined in several header files. The header
file Chars.h  contains characters that are guaranteed to be
supported on all systems regardless of the encoding. Other header
files exist for each supported character encoding and contain
characters specific to that encoding. The character encoding-specific
header files are not included in the PalmOS.h  header by default
because they define characters that are not available on every
system.

To make it easier for the compiler to find character encoding
problems with your project, make a practice of using the character
constants defined in these header files rather than directly assigning
a character variable to a value. For example, suppose your code
contained this statement:

WChar ch = 'å'; // WRONG! Don’t use.

This statement may work on a Latin system, but it would cause
problems on an Asian-language system because the å character does
not exist. If you instead assign the value this way:

WChar ch = chrSmall_A_RingAbove;

you’ll find the problem at compile time because the
chrSmall_A_RingAbove  constant is defined in CharLatin.h ,
which is not included by default.

Missing and Invalid Characters
If during application testing, you see an open rectangle, a shaded
rectangle, or a gray square displayed on the screen, you have a
missing character.

A missing character is one that is valid within the character
encoding but the current font is not able to display it. In this case,
nothing is wrong with your code other than you have chosen the
wrong font. The system displays a gray square in place of a missing
double-byte character and an open rectangle in place of a missing
single-byte rectangle (see Figure 13.1).
332 Palm OS Programmer’s Companion



Local ized Appl icat ions
Characters
Figure 13.1 Missing/invalid characters

In multi-byte character encodings, a character may be missing as
described above, or it may be invalid. In single-byte character
encodings, there’s a one-to-one correspondence between numeric
values and characters to represent. This is not the case with multi-
byte character encodings. In multi-byte character encodings, there
are more possible values than there are characters to represent.
Thus, a character variable could end up containing an invalid
character—a value that doesn’t actually represent a character.

If the system is asked to display an invalid character, it prints an
open rectangle for the first invalid byte. Then it starts over at the
next byte. Thus, the next character displayed and possibly even the
remaining text displayed is probably not what you want. Check
your code for the following:

• Truncating strings. You might have truncated a string in the
middle of a multi-byte character.

• Appending characters from one encoding set to a string in a
different encoding.

• Arithmetic on character variables that could result in an
invalid character value.

• Arithmetic on a string pointer that could result in pointing to
an intra-character boundary. See “Performing String Pointer
Manipulation” for more information.

• Assumptions that a character is always a single byte long.

Use the text manager function TxtCharIsValid  to determine
whether a character is valid or not.

Retrieving a Character’s Attributes
The text manager defines certain functions that retrieve a
character’s attributes, such whether the character is alphanumeric,

Missing single-byte character

Missing or invalid double-byte character
Palm OS Programmer’s Companion 333



Local ized Appl icat ions
Characters
etc. You can use these functions on any character, regardless of its
size and encoding.

A character also has attributes unique to its encoding. Functions to
retrieve those attributes are defined in the header files specific to the
encoding.

WARNING! In previous versions of the Palm OS, the header file
CharAttr.h  defined character attribute macros such as
IsAscii . Using these macros on double-byte characters
produces incorrect results. Use the text manager macros instead
of the CharAttr.h  macros.

Virtual Characters
Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters
should never occur in any data and should never appear on the
screen.

The Palm OS uses character codes 256 decimal and greater for
virtual characters. The range for these characters may actually
overlap the range for “real” characters (characters that should
appear on the screen). The keyDownEvent  distinguishes a virtual
character from a displayable character by setting the command bit
in the event record.

The best way to check for virtual characters, including virtual
characters that represent the hard keys, is to use the
TxtGlueCharIsVirtual  function defined in the PalmOSGlue
library. (See “Compatibility Information” for more information on
the PalmOSGlue library.)

Therefore, when you check for a virtual character, first check the
command bit in the event record. If the command bit is set, then the
character is virtual. See Listing 13.2.
334 Palm OS Programmer’s Companion



Local ized Appl icat ions
Characters
Listing 13.2 Checking for virtual characters

if (TxtGlueCharIsVirtual
(eventP->data.keyDown.modifiers,
eventP->data.keyDown.chr)) {
if (TxtCharIsHardKey

(event->data.keyDown.modifiers,
event->data.keyDown.chr)) {
// Handle hard key virtual character.

} else {
// Handle standard virtual character.

}
} else {

// Handle regular character.
}

Retrieving the Character Encoding
Occasionally, you may need to determine which character encoding
is being used. For example, your application may need to do some
unique text manipulation if it is being run on a European device.
You can retrieve the character encoding from the system feature set
using the FtrGet  function as shown in Listing 13.3.

Listing 13.3 Retrieving the character encoding

UInt32 encoding;
Char* encodingName;
if (FtrGet(sysFtrCreator, sysFtrNumEncoding,

&encoding) != 0)
encoding = charEncodingPalmLatin;

//default encoding
if (encoding == charEncodingPalmSJIS) {

// encoding for Palm Shift-JIS
} else if (encoding == charEncodingPalmLatin) {

// extension of ISO Latin 1
}

// The following text manager function returns the
// official name of the encoding as required by
Palm OS Programmer’s Companion 335



Local ized Appl icat ions
Strings
// Internet applications.
encodingName = TxtEncodingName(encoding);

Strings
On systems that support the international manager and the text
manager, strings are made up of characters that are either a single-
byte long or multiple bytes long, up to four bytes. As stated
previously, character variables are always two bytes long. However,
when you add a character to a string, the operating system may
shrink it down to a single byte if it’s a low ASCII character. Thus,
any string that you work with may contain a mix of single-byte and
multi-byte characters.

Using characters of different sizes in a string has implications for
manipulating strings, searching strings, and implementing the
global find facility in your application. This section describes how to
perform all of these tasks using text manager functions. It also
describes how to create and display dynamically computed strings
and how to display error messages.

• Manipulating Strings

• Performing String Pointer Manipulation

• Truncating Displayed Text

• Comparing Strings

• Global Find

• Dynamically Determining a String’s Contents

TIP: Many of the existing Palm OS functions have been
modified to work with strings containing multi-byte characters. All
Palm OS functions that return the length of a string, such as
FldGetTextLength  and StrLen , always return the size of the
string in bytes, not the number of characters in the string.
336 Palm OS Programmer’s Companion



Local ized Appl icat ions
Strings
Manipulating Strings
Any time that you want to work with character pointers, you need
to be careful not to point to an intra- character boundary (a middle
or end byte of a multi-byte character). For example, any time that
you want to set the insertion point position in a text field or set the
text field’s selection, you must make sure that you use byte offsets
that point to inter-character boundaries. (The inter-character
boundary is both the start of one character and the end of the
previous character, except when the offset points to the very
beginning or very end of a string.)

Suppose you want to iterate through a string character by character.
Traditionally, C code uses a character pointer or byte counter to
iterate through a string a character at a time. Such code will not
work properly on systems with multi-byte characters. Instead, if
you want to iterate through a string a character at a time, use text
manager functions:

• TxtGetNextChar  retrieves the next character in a string.

• TxtGetPreviousChar retrieves the previous character in a
string.

• TxtSetNextChar changes the next character in a string and
can be used to fill a string buffer.

Each of these three functions returns the size of the character in
question, so you can use it to determine the offset to use for the next
character. For example, Listing 13.4 shows how to iterate through a
string character by character until a particular character is found.

Listing 13.4 Iterating through a string or text

Char* buffer; // assume this exists
Int16 bufLen = StrLen(buffer);
// Length of the input text.
WChar ch = 0;
UInt16 i = 0;
while ((i < bufLen) && (ch != chrAsterisk))

i+= TxtGetNextChar(buffer, i, &ch));
Palm OS Programmer’s Companion 337



Local ized Appl icat ions
Strings
The text manager also contains functions that let you determine the
size of a character without iterating through the string:

• TxtCharSize  returns how much space a given character
will take up inside of a string.

• TxtCharBounds  determines the boundaries of a given
character within a given string.

Listing 13.5 Working with arbitrary limits

UInt32* charStart, charEnd;
Char* fldTextP = FldGetTextPtr(fld);
TxtCharBounds(fldTextP, min(kMaxBytesToProcess,

FldGetTextLength(fld)), &charStart, &charEnd);
// process only the first charStart bytes of text.

Performing String Pointer Manipulation
Never perform any pointer manipulation on strings you pass to the
text manager unless you use text manager calls to do the
manipulation. For text manager functions to work properly, the
string pointer must point to the first byte of a character. If you use
text manager functions when manipulating a string pointer, you can
be certain that your pointer always points to the beginning of a
character. Otherwise, you run the risk of pointing to an inter-
character boundary.

// WRONG! buffer + kMaxStrLength is not
// guaranteed to point to start of character.
buffer[kMaxStrLength] = '\0';

// Right. Truncate at a character boundary.
UInt32 charStart, charEnd;
TxtCharBounds(buffer, kMaxStrLength,

&charStart, &charEnd);
TxtSetNextChar(buffer, charStart, chrNull);
338 Palm OS Programmer’s Companion



Local ized Appl icat ions
Strings
Truncating Displayed Text
If you’re performing drawing operations, you often have to
determine where to truncate a string if it’s too long to fit in the
available space. Two functions help you perform this task on strings
with multi-byte characters:

• WinDrawTruncChars  - This function draws a string within
a specified width, determining automatically where to
truncate the string. If it can, it draws the entire string. If the
string doesn’t fit in the space, it draws one less than the
number of characters that fit and then ends the string with an
ellipsis (...).

• FntWidthToOffset  - This function returns the byte offset
of the character displayed at a given pixel position. It can also
return the width of the text up to that offset.

Comparing Strings
Use the text manager functions TxtCompare  and
TxtCaselessCompare  to perform comparisons of strings.

In character encodings that use multi-byte characters, some
characters are accurately represented as either single-byte characters
or multi-byte characters. That is, a character might have both a
single-byte representation and a double-byte representation. One
string might use the single-byte representation and another might
use the multi-byte representation. Users expect the characters to
match regardless of how many bytes a string uses to store that
character. TxtCompare and TxtCaselessCompare can accurately
match single-byte characters with their multi-byte equivalents.

Because a single-byte character might be matched with a multi-byte
character, two strings might be considered equal even though they
have different lengths. For this reason, TxtCompare  and
TxtCaselessCompare  take two parameters in which they pass
back the length of matching text in each of the two strings. See the
function descriptions in the Palm OS SDK Reference for more
information.

Note that StrCompare  and StrCaselessCompare  are
equivalent, but they do not pass back the length of the matching
text.
Palm OS Programmer’s Companion 339



Local ized Appl icat ions
Strings
Global Find
A special case of performing string comparison is implementing the
global system find facility. To implement this facility, you should
call TxtFindString . As with TxtCompare  and
TxtCaselessCompare , TxtFindString  accurately matches
single-byte characters with their corresponding multi-byte
characters. Plus, it passes back the length of the matched text. You’ll
need this value to highlight the matching text when the system
requests that you display the matching record.

Older versions of Palm OS use the function FindStrInStr .
FindStrInStr is not able to return the length of the matching text.
Instead, it assumes that characters within the string are always one
byte long.

Listing 13.6 and Listing 13.7 show how to implement a global find
facility on all systems (whether the text manager exists or not), and
how to implement a response to sysAppLaunchCmdGoto , which is
the system’s request that the matching record be displayed. These
two listings are only code excerpts. For the complete
implementation of these two functions, see the example code in
your development environment.

Listing 13.6 Implementing global find

static void Search (FindParamsPtr findParams)
{

UInt16 recordIndex = 0;
DmOpenRef dbP;
UInt16 cardNo = 0;
LocalID dbID;
MemoDBRecordPtr memoPadRecP;

// Open the database to be searched.
dbP = DmOpenDatabaseByTypeCreator(memoDBType,

sysFileCMemo, findParams->dbAccesMode);
DmOpenDatabaseInfo(dbP, &dbID, 0, 0, &cardNo,

0);

// Get first record to search.
340 Palm OS Programmer’s Companion



Local ized Appl icat ions
Strings
memoRecP = GetRecordPtr(dbP, recordIndex);
while (memoRecP != NULL) {

Boolean done;
Boolean match;
UInt32 matchPos, matchLength;

// TxtGlueFindString calls TxtFindString if it
// exists, or else it implements the Latin
// equivalent of it.
match = TxtGlueFindString (&(memoRecP->note),

findParams->strToFind, &matchPos,
&matchLength);

if (match) {
done = FindSaveMatch (findParams,

recordIndex, matchPos, 0, matchLength,
cardNo, dbIDP);

}
MemPtrUnlock (memoRecP);

if (done) break;
recordIndex += 1;

}
DmCloseDatabase (dbP);

}

Listing 13.7 Displaying the matching record

static void GoToRecord (GoToParamsPtr goToParams,
Boolean launchingApp)
{

UInt16 recordNum;
EventType event;

recordNum = goToParams->recordNum;
...

// Send an event to goto a form and select the
// matching text.
Palm OS Programmer’s Companion 341



Local ized Appl icat ions
Strings
MemSet (&event, sizeof(EventType), 0);

event.eType = frmLoadEvent;
event.data.frmLoad.formID = EditView;
EvtAddEventToQueue (&event);

MemSet (&event, sizeof(EventType), 0);
event.eType = frmGotoEvent;
event.data.frmGoto.recordNum = recordNum;
event.data.frmGoto.matchPos =

goToParams->matchPos;
event.data.formGoto.matchLen =

goToParams->matchCustom;
event.data.frmGoto.matchFieldNum =

goToParams->matchFieldNum;
event.data.frmGoto.formID = EditView;
EvtAddEventToQueue (&event);
...

}

Dynamically Determining a String’s Contents
When working with strings in a localized application, you never
hard code them. Instead, you store strings in a resource and use the
resource to display the text. If you need to create the contents of the
string at runtime, store a template for the string as a resource and
then substitute values as needed.

For example, consider the Edit view of the Memo application. Its
title bar contains a string such as “Memo 3 of 10.” The number of the
memo being displayed and the total number of memos cannot be
determined until runtime.

To create such a string, use a template resource and the text manager
function TxtParamString . TxtParamString  allows you to
search for the sequence ^0, ^1, up to ^3 and replace each of these
with a different string. (If you need more parameters, you can use
TxtReplaceStr , which allows you to replace up to ^9; however,
TxtReplaceStr only allows you to replace one of these sequences
at a time.) The PalmOSGlue library defines a function
342 Palm OS Programmer’s Companion



Local ized Appl icat ions
Strings
TxtGlueParamString , which calls TxtParamString  if it exists
or else implements the Latin equivalent of it.

In the Memo title bar example, you’d create a string resource that
looks like this:

Memo ^0 of ^1

And your code might look like this:

Listing 13.8 Using string templates

static void EditViewSetTitle (void)
{

Char* titleTemplateP;
FormPtr frm;
Char posStr [maxStrIToALen];
Char totalStr [maxStrIToALen];
UInt16 pos;
UInt16 length;

// Format as strings, the memo's postion within
// its category, and the total number of memos
// in the category.
pos = DmPositionInCategory (MemoPadDB,

CurrentRecord, RecordCategory);
StrIToA (posStr, pos+1);

if (MemosInCategory == memosInCategoryUnknown)
MemosInCategory = DmNumRecordsInCategory

(MemoPadDB, RecordCategory);
StrIToA (totalStr, MemosInCategory);

// Get the title template string.  It contains
// '^0' and '^1' chars which we replace with the
// position of CurrentRecord within
// CurrentCategory and with the total count of
// records in CurrentCategory ().
titleTemplateP = MemHandleLock (DmGetResource

(strRsc, EditViewTitleTemplateStringString));

EditViewTitlePtr =
Palm OS Programmer’s Companion 343



Local ized Appl icat ions
Dates
TxtGlueParamString(titleTemplateP, posStr,
totalStr, NULL, NULL);

// Now set the title to use the new title
// string.
frm = FrmGetFormPtr (MemoPadEditForm);
FrmSetTitle (frm, EditViewTitlePtr);
MemPtrUnlock(titleTemplateP);

}

Dates
If your application deals with dates and times, it should abide by
the values the user has set in the system preference for date and
time display. The default preferences at startup are different for the
different languages, though they can be overridden.

To check the system preferences call PrefGetPreference  with
one of the values listed in the second column of Table 13.1. The third
column lists an enumerated type that helps you interpret the value.

Table 13.1 Date and time preferences

Preference Name Returns a value
of type

Date formats (i.e.,
month first or day
first)

prefDateFormat DateFormatType

Time formats (i.e.,
use a 12-hour clock
or use a 24-hour
clock)

prefTimeFormat TimeFormatType

Start day of week
(i.e., Sunday or
Monday)

prefWeekStartDay 0 (Sunday) or
1 (Monday)
344 Palm OS Programmer’s Companion



Local ized Appl icat ions
Numbers
To work with dates in your code, use the Date and Time Manager
API. It contains functions such as DateToAscii , DayOfMonth ,
DayOfWeek, and DaysInMonth , which allow you to work with
dates independent of the user’s preference settings.

Numbers
If your application displays large numbers or floating-point
numbers, you must check and make sure you are using the
appropriate thousands separator and decimal separator for the
device’s country by doing the following (see Listing 13.9):

1. Store numbers using US conventions, which means using a
“,” as the thousands separator and a decimal point (.) as the
decimal separator.

2. Use PrefGetPreference  and
LocGetNumberSeparators  to retrieve information about
how the number should be displayed.

3. Use StrLocalizeNumber  to perform the localization.

4. If a user enters a number that you need to manipulate in
some way, convert it to the US conventions using
StrDelocalizeNumber .

Listing 13.9 Working with numbers

// store numbers using US conventions.
Char *jackpot = "20,000,000.00";
Char thou; // thousand separator
Char dp; // decimal separator

// Retrieve current country’s preferences.
LocGetNumberSeparators((NumberFormatType)

PrefGetPreference(prefNumberFormat), &thou,
&dp);

// Localize jackpot number. Converts "," to thou
// and "." to dp.
StrLocalizeNumber(jackpot, thou, dp);
// Display string.
// Assume inputString is a number user entered,
// convert it to US conventions this way. Converts
Palm OS Programmer’s Companion 345



Local ized Appl icat ions
Compatibility Information
// thou to "," and dp to "."
StrDelocalizeNumber(inputNumber, thou, dp);

Compatibility Information
If you want to maintain backward compatibility with earlier
releases but you still want to use the localization features described
in this chapter, you can link your application with the library
PalmOSGlue (PalmOSGlue.lib  or libPalmOSGlue.a ). This
library provides these features for versions 2.0 and 3.0.

When you use PalmOSGlue, you use the text manager in the same
way as described in this chapter, but the names of the functions are
different. For example, TxtFindString  is named
TxtGlueFindString  in the PalmOSGlue. (See the chapter
“PalmOSGlue Library” on page 1183 of the Palm OS SDK Reference
for a complete mapping table.) When you make a call to a glue
function (TxtGlue Func, FntGlue Func, or WinGlue Func), the code
in PalmOSGlue either uses the text manager or international
manager on the ROM or, if the managers don’t exist, executes a
simple Latin equivalent of the function.

PalmOSGlue is a linkable library that is bound to your project at
link time. It is not a shared library. PalmOSGlue will increase your
application’s code size. The exact amount by which your code size
increases depends on the number of library functions you call; the
linker strips any unused routines and data.

Palm OS version 3.1 contains the following changes from previous
releases that affect strings, text, and localization. These changes may
affect you if you’re updating an application written to run on a prior
release or if you want to maintain backward compatibility with
prior releases:

• The keyDownEvent  structure’s chr  field (which contains
the input character) has been changed from a Word to a
WChar. The chr  field may contain a multi-byte character, so
you should never copy the chr  field into a Char  variable or
pass it to a function using a Char  parameter. Always use
WChar.
346 Palm OS Programmer’s Companion



Local ized Appl icat ions
Notes on the Japanese Implementation
• Some of the special Palm OS glyphs in the high ASCII range
(such as the shortcut stroke and the command stroke) have
been moved down into the control code range, and other
characters (such as the numeric space and horizontal ellipsis)
have been copied into the control range so that they’re
guaranteed to exist in every encoding. For the numeric space
and horizontal ellipsis, you can use the macros
ChrNumericSpace  and ChrHorizEllipsis  to return the
appropriate character regardless of the character map. In
PalmOSGlue, these two macros are named
TxtGlueGetNumericSpaceChar  and
TxtGlueGetHorizEllipsisChar , respectively.

• The four playing-card characters have been moved from the
high ASCII range in the standard four fonts to the 9-point
Symbol font.

• Character attribute functions and macros are now obsolete
and have been replaced by functions and macros in the text
manager.

• The String Manager functions StrChr  and StrStr  now
treat buffers as characters, not arbitrary byte arrays. If you
previously used these functions to search data buffers, your
code may no longer work.

Notes on the Japanese Implementation
This section describes programming practices for applications that
are to be localized for Japanese use. It covers:

• Japanese Character Encoding

• Japanese Character Input

• Displaying Japanese Strings on UI Objects

• Displaying Error Messages

Japanese Character Encoding
The character encoding used on Japanese systems is based on
Microsoft code page 932. The complete 932 character set (JIS level 1
and 2) is supported in both the standard and large font sizes. The
bold versions of these two fonts contain bolded versions of the
Palm OS Programmer’s Companion 347



Local ized Appl icat ions
Notes on the Japanese Implementation
glyphs found in the 7-bit ASCII range, but the single-byte Katakana
characters and the multi-byte characters are not bolded.

Japanese Character Input
On current Japanese devices, users enter Japanese text using Latin
(ASCII) characters, and special software called a front-end processor
(FEP) transliterates this text into Hiragana or Katakana characters.
The user can then ask the FEP to phonetically convert Hiragana
characters into a mixture of Hiragana and Kanji (Kana-Kanji
conversion).

Four silkscreen buttons added to the Japanese device control the
FEP transliteration and conversion process. These four FEP buttons
are arranged vertically between the current left-most silkscreen
buttons and the Graffiti® area. The top-most FEP button tells the FEP
to attempt Kana-Kanji conversion on the inline text. The next button
confirms the inline text and terminates the inline conversion
session. The third button toggles the transliteration mode between
Hiragana and Katakana. The last button toggles the FEP on and off.

Japanese text entry is always inline, which means that
transliteration and conversion happen directly inside of a field. The
field code passes events to the FEP, which then returns information
about the appropriate text to display.

During inline conversion, the Graffiti space stroke acts as a shortcut
for the conversion FEP button and the Graffiti return stroke acts as a
shortcut for the confirm FEP button.

Displaying Japanese Strings on UI Objects
To conserve screen space, you should use half-width Katakana
characters on user interface elements (such as buttons, menu items,
labels, and pop-up lists) whenever the string contains only
Katakana characters. If the string contains a mix of Katakana and
either Hiragana, Kanji, or Romaji, then use the full-width Katakana
characters instead.
348 Palm OS Programmer’s Companion



Local ized Appl icat ions
Summary of Localization
Displaying Error Messages
You may have code that uses the macros ErrFatalDisplayIf
and ErrNonFatalDisplayIf to determine error conditions. If the
error condition occurs, the system displays the file name and line
number at which the error occurred along with the message that
you passed to the macro. Often these messages are hard-coded
strings. On Japanese systems, the Palm OS traps the messages
passed to these two macros and displays a generic message
explaining that an error has occurred.

You should only use ErrFatalDisplayIf  and
ErrNonFatalDisplayIf for totally unexpected errors. Do not use
them for errors that you believe your end users will see. If you wish
to inform your users of an error, use a localizable resource to display
the error message instead of ErrFatalDisplayIf  or
ErrNonFatalDisplayIf .

Summary of Localization
Text Manager

Working With Multi-Byte Characters

TxtCharBounds
TxtPreviousCharSize
TxtByteAttr

TxtCharSize
TxtNextCharSize

Changing Text

TxtReplaceStr
TxtGetTruncationOffset

TxtSetNextChar
TxtTransliterate

Accessing Text

TxtGetNextChar
TxtGetChar

TxtGetPreviousChar
TxtWordBounds

Searching/Comparing Text

TxtCaselessCompare
TxtFindString

TxtCompare
Palm OS Programmer’s Companion 349



Local ized Appl icat ions
Summary of Localization
Obtaining a Character’s Attributes

TxtCharIsAlNum
TxtCharIsDigit
TxtCharIsLower
TxtCharIsSpace
TxtCharIsValid
TxtCharIsCntrl
TxtCharIsPunct
TxtCharWidth

TxtCharIsAlpha
TxtCharIsGraph
TxtCharIsPrint
TxtCharIsUpper
TxtCharXAttr
TxtCharIsHex
TxtCharAttr

Obtaining Character Encoding information

TxtStrEncoding
TxtMaxEncoding

TxtEncodingName
TxtCharEncoding

Localizing Numbers

StrLocalizeNumber
LocGetNumberSeparators

StrDelocalizeNumber

International Manager

IntlGetRoutineAddress

Overlay Manager

OmGetCurrentLocale
OmGetIndexedLocale
OmGetRoutineAddress
OmSetSystemLocale

OmGetSystemLocale
OmLocaleToOverlayDBName
OmOverlayDBNameToLocale

Text Manager
350 Palm OS Programmer’s Companion



14
Debugging
Strategies
You can use a Palm OS® system manager called the error manager to
display unexpected runtime errors such as those that typically show
up during program development. Final versions of applications or
system software won’t use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, file name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc.

This section helps you understand and use the error manager,
discussing the following topics:

• Displaying Development Errors

• Understanding the Try-and-Catch Mechanism

• Using the Error Manager Macros

• Summary of Debugging API

This chapter only describes programmatic debugging strategies; to
learn how to use the available tools to debug your application, see
the book Palm OS Programming Development Tools Guide.

Displaying Development Errors
The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: ErrDisplay ,
ErrFatalDisplayIf , and ErrNonFatalDisplayIf .
Palm OS Programmer’s Companion 351



Debugging Strategies
• ErrDisplay  always displays the error message on the
screen.

• ErrFatalDisplayIf  and ErrNonFatalDisplayIf
display the error message only if their first argument is
TRUE.

The error manager uses the compiler define ERROR_CHECK_LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the
software to operate that way.

Using the Error Manager Macros
Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be set to true  to
display the error, and a pointer to a text message to display if the
condition is true.

Typically, the boolean parameter is an in-line expression that
evaluates to true if there is an error condition. As a result, both the
expression that evaluates the error condition and the message text
are left out of the compiled code when error checking is turned off.

If you set
ERR_CHECK_LEVEL to...

The compiler...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR_CHECK_PARTIAL
(1)

Compiles in only ErrDisplay
and ErrFatalDisplayIf  calls.

ERROR_CHECK_FULL (2) Compiles in all three calls.
352 Palm OS Programmer’s Companion



Debugging Strategies
You can call ErrFatalDisplayIf , or ErrDisplay , but using
ErrFatalDisplayIf  makes your source code look neater.

For example, assume your source code looks like this:

result = DoSomething();
ErrFatalDisplayIf (result < 0,

"unexpected result from DoSomething");

With error checking turned on, this code displays an error alert
dialog if the result from DoSomething() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluation err < 0  and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:

result = DoSomething();
#if ERROR_CHECK_LEVEL != ERROR_CHECK_NONE
if (result < 0)

ErrDisplay ("unexpected result from
DoSomething");
#endif

However, this solution is longer and requires more work than
simply calling ErrFatalDisplayIf . It also makes the source code
harder to follow.

Understanding the Try-and-Catch Mechanism
The error manager is aware of the machine state of the Palm OS
device and can therefore correctly save and restore this state. The
built-in try and catch of the compiler can’t be used because it’s
machine dependent.

Try and catch is basically a neater way of implementing a goto if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every
routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error
Palm OS Programmer’s Companion 353



Debugging Strategies
handling routine at any time by calling ErrThrow . When the
compiler sees the ErrThrow  call, it performs a goto  to your error
handling code. The greatest advantage to calling ErrThrow ,
however, is for handling errors in nested subroutine calls.

Even if ErrThrow is called from a nested subroutine, execution
immediately goes to the same error handling code in the higher-
level call. The compiler and runtime environment automatically
strip off the stack frames that were pushed onto the stack during the
nesting process and go to the error handling section of the higher-
level call. You no longer have to check for result codes after calling
every subroutine; this greatly simplifies your source code and
reduces its size.

Using the Try and Catch Mechanism
The following example illustrates the possible layout for a typical
routine using the error manager’s try and catch mechanism.

Listing 14.1 Try and Catch Mechanism Example

ErrTry {
p = MemPtrNew(1000);
if (!p) ErrThrow(errNoMemory);
MemSet(p, 1000, 0);
CreateTable(p);
PrintTable(p);
}

ErrCatch(err) {
// Recover or clean up after a failure in the
// above Try block."err" is an int
// identifying the reason for the failure.

// You may call ErrThrow() if you want to
// jump out to the next Catch block.

// The code in this Catch block doesn’t
// execute if the above Try block completes
// without a Throw.
354 Palm OS Programmer’s Companion



Debugging Strategies
if (err == errNoMemory)
ErrDisplay("Out of Memory");

else
ErrDisplay("Some other error");

} ErrEndCatch
// You must structure your code exactly as
//above. You can’t have an ErrTry without an
//ErrCatch { } ErrEndCatch, or vice versa.

Any call to ErrThrow  within the ErrTry  block results in control
passing immediately to the ErrCatch block. Even if the subroutine
CreateTable called ErrThrow , control would pass directly to the
ErrCatch  block. If the ErrTry  block completes without calling
ErrThrow , the ErrCatch  block is not executed.

You can nest multiple ErrTry blocks. For example, if you wanted to
perform some cleanup at the end of CreateTable  in case of error,

• Put ErrTry /ErrCatch  blocks in CreateTable

• Clean up in the ErrCatch  block first

• Call ErrThrow  to jump to the top-level ErrCatch

Summary of Debugging API

Error Manager Functions

ErrDisplay ErrDisplayFileLineMsg

ErrFatalDisplayIf ErrNonFatalDisplayIf

ErrThrow ErrAlert
Palm OS Programmer’s Companion 355





15
Standard IO
Applications
The Palm OS® supports command line (UNIX style) applications for
debugging and special purposes such as communications utilities.
This capability is not intended for general users, but for developers.
This feature is not implemented in the Palm OS, but rather by
additional C modules that you must link with your application.

NOTE: Don’t confuse this standard IO functionality with the file
streaming API. They are unrelated.

There are two parts necessary for a standard IO application:

• The standard IO application itself.

A standard IO application is not like a normal Palm
application. It is executed by a command line and has
minimal user interface. It can take character input from the
stdin device (the keyboard) and write character output to the
stdout window.

• The standard IO provider application.

A standard IO provider application is necessary to execute
and see output from a standard IO application. The standard
IO provider application is a normal Palm application that
provides a field in which you can enter commands to execute
standard IO applications. The field also serves as a stdout
window where output from the executing application is
written.

The details of creating these two different applications are described
in the following sections.
Palm OS Programmer’s Companion 357



Standard IO Appl icat ions
Creating a Standard IO Application
Creating a Standard IO Application
To create a standard IO application, you must include the header file
StdIOPalm.h . In addition to including this header, you must link
the application with the module StdIOPalm.c . This module
provides a PilotMain  routine that extracts the command line
arguments from the cmd and cmdPBPparameters and the glue code
necessary for executing the appropriate callbacks supplied by the
standard IO provider application.

You build the application normally, but give it a database type of
sioDBType  ('sdio') instead of 'appl'. In addition, it must be named
“Cmd-cmdname” where cmdname is the name of the command used
to execute the application. For example, the ping command would
be placed in a database named “Cmd-ping“.

In the Palm VII™ device, the Network panel, whose log window is a
standard IO provider application, has two standard IO commands
built-in: info and finger. The ROM has two additional ones: ping
and nettrace.

When compiling for the Palm device, the entry point must be
named SioMain and must accept two parameters: argc and argv .
Here’s the simplest possible example of a standard IO application.

#include <StdIOPalm.h>
Int16 SioMain(UInt16 argc, Char* argv[ ])
{ printf(“Hello World\n”);
}

Standard IO applications can use several input and output functions
that mimic their similarly named UNIX counterparts. These are
listed in the summary table at the end of this chapter.

Your standard IO application can accept input from stdin and write
output to stdout. The stdin device corresponds to the text field in
the standard IO provider application that is used for input and
output. The stdout device corresponds to that same text field.
358 Palm OS Programmer’s Companion



Standard IO Appl icat ions
Creating a Standard IO Provider Application
Creating a Standard IO Provider Application
In order for a standard IO application to be invoked and able to
provide results, you need a standard IO provider application. This
application provides the user interface support; that is, the stdin
device support and the stdout window that the standard IO
application reads from and writes to.

The standard IO provider sublaunches the standard IO application
when the user types in a command line and Return (using Graffiti®).
The provider application passes a structure pointer that contains the
callbacks necessary for performing IO to the standard IO
application through the cmdPBP parameter of PilotMain .

To create a standard IO provider application, you must link the
application with the module StdIOProvider.c .

To handle input and output, the standard IO provider application
must provide a form with a text field and a scroll bar. The standard
IO provider application must do the following:

1. Call SioInit  during application initialization. SioInit
saves the object ID of the form that contains the input/output
field, the field itself, and the scroll bar.

2. Call SioHandleEvent from the form's event handler before
doing application specific processing of the event. In other
words, the form event handler that the application installs
with FrmSetEventHandler should call SioHandleEvent
before it does anything else with the event.

3. Call SioFree  during application shutdown.

The application is free to call any of the standard IO macros and
functions between the SioInit  and SioFree  calls. If the current
form is not the standard IO form when these calls are made, they
will record changes to the active text and display it the next time the
form becomes active.

A typical standard IO provider application will have a routine
called ApplicationHandleEvent , which gets called from its
main event loop after SysHandleEvent  and MenuHandleEvent .
An example is shown in Listing 15.1.
Palm OS Programmer’s Companion 359



Standard IO Appl icat ions
Creating a Standard IO Provider Application
Listing 15.1 Standard IO Provider ApplicationHandleEvent
Routine

static Boolean ApplicationHandleEvent (EventPtr
event)

{
FormType* frm;
UInt16 formId;

if (event->eType == frmLoadEvent) {
formId = event->data.frmLoad.formID;
frm = FrmInitForm (formId);
FrmSetActiveForm (frm);

switch (formId) {
.....
case myViewWithStdIO:

FrmSetEventHandler (frm,
MyViewHandleEvent);

break;
}

return (true);
}

return (false);
}

A typical application form event handler is shown in Listing 15.2.

Listing 15.2 Standard IO Provider Form Event Handler

static Boolean MyViewHandleEvent (EventPtr
event)

{
FormType* frm;
Boolean handled = false;

// Let StdIO handler do its thing first.
if (SioHandleEvent(event)) return true;
360 Palm OS Programmer’s Companion



Standard IO Appl icat ions
Creating a Standard IO Provider Application
// If StdIO did not completely handle the
event...

if (event->eType == ctlSelectEvent) {
switch (event->data.ctlSelect.controlID) {

case myViewDoneButtonID:
FrmGotoForm (networkFormID);
handled = true;
break;

}
}

else if (event->eType == menuEvent)
return MyMenuDoCommand( event-

>data.menu.itemID );

else if (event->eType == frmUpdateEvent) {
MyViewDraw( FrmGetActiveForm() );
handled = true;
}

else if (event->eType == frmOpenEvent) {
frm = FrmGetActiveForm();
MyViewInit( frm );
MyViewDraw( frm );
handled = true;
}

else if (event->eType == frmCloseEvent) {
frm = FrmGetActiveForm();
MyViewClose(frm);
}

return (handled);
}

Palm OS Programmer’s Companion 361



Standard IO Appl icat ions
Summary of Standard IO
Summary of Standard IO
Standard IO Macros and Functions

fgetc
fgets
fprintf
fputc
fputs
getchar
gets
printf
putc

putchar
puts
SioAddCommand
SioMain
sprintf
system
vfprintf
vsprintf

Standard IO Provider Functions

SioClearScreen
SioExecCommand
SioFree

SioHandleEvent
SioInit
362 Palm OS Programmer’s Companion



Index
Numerics
0.01-second timer 227

1.0 heaps 169

1-second timer 226

2.0 heaps 169

3.0 heaps 169

32K jumps 28

68328 processor 157

A
alarm manager 189–195

and alarm sound 190
procedure alarms 193
reminder dialog boxes 190

alarm sound 190, 208

alarms 25

alert manager 83

alerts, system-defined 83

allocating handles 28

AlmGetAlarm 191

AlmGetProcAlarm 194

AlmSetAlarm 190, 192

AlmSetProcAlarm 194

ANSI C libraries 19

AppInfoType 108

APPL database 29

application design
accessibility 35
assigning version number 30
buttons 36
command buttons 35
data entry 39
dialogs 35
ease of use 35
handling system messages 26
minimizing taps 35
removing deleted records 30
switching applications 38
using lists 105

application icon 26, 37
name 25
size 26

application launcher 50

application name 25

application preferences database 25

application record database 25

application startup 49–63

application-defined features 197

applications
control flow 18
event driven 18

AppNetRefnum 278, 279

AppNetTimeout 279

architecture of memory 157

auto-off 223
timer 74

auto-repeat 74

B
back-up of data to PC 156

BarBeamBitmap 104

BarCopyBitmap 104

BarCutBitmap 104

BarDeleteBitmap 104

BarInfoBitmap 104

BarPasteBitmap 104

BarSecureBitmap 104

BarUndoBitmap 104

battery 223
conservation using modes 222
life, maximizing 222

battery life and serial manager 236

baud rate, parity options 237

beaming 265

Berkeley Sockets API 274
mapping example 277

bind (Berkeley Sockets API) 289

bitmap family 117

bitmaps 116
bitmap family 117
masking 118
transparent 118

BitmapType 117

bits behind menu bar 101

BmpCreate 118

booting 218

button objects 86

Button resource 35, 78
Palm OS Programmer’s Companion 363



Index
highlighting 86

buttons
assignment by end-user 38
choosing number 36
in dialog 44
position 43
traversing categories 38

byte ordering 234

C
C library

and float manager 228
and string manager 133

C library calls 33

calibrating digitizer 138

carriage returns 98

categories 37, 38
maximum number 27
traversing with button 38

CategoryGetName 111

categoryHideEditCategory 113

CategoryInitialize 109

CategorySetTriggerLabel 111

changing serial port settings 237

Char 331

Chars.h 332

check box object 91

Checkbox 78

ChrHorizEllipsis 347

ChrNumericSpace 347

chunks 165
resizing 168
size 168

Click sound 208

clipboard 41

clock, real-time 226

close (Berkeley Sockets API) 289

close-wait state 286

closing net library 286

closing serial link manager 259

closing serial port 237

CMP 235

CodeWarrior IDE 20

color translation table 129

colorTableRsc 128

command buttons 35

command line applications 357

command toolbar 102

conduit 17

configuration, net library 279

Confirmation sound 208

connect (Berkeley Sockets API) 289

connection management protocol 235

connection manager 254

connectivity 233

connector (external) 234

conserving battery using modes 222

Constructor 20

control flow 18

control objects 86

conventions for naming 27

CoreTraps.h 47

CRC-16 255

creating a chunk 168

creating database 177

creating resources 183

creator ID 29

ctlEnterEvent 87, 88, 89, 91, 92, 93, 95

ctlExitEvent 90, 95

CtlHandleEvent 86

CtlNewControl 126

ctlRepeatEvent 90, 95

ctlSelectEvent 88, 89, 91, 92, 95, 112

CTS timeout 237

custom UI element 122

D
data entry, Graffiti 39

data manager 173
using 177

database headers 175
fields 175

database ID
and launch codes 58

database version number 30

databases 18, 160, 174
getting and setting information 178
overlays 326
364 Palm OS Programmer’s Companion



Index
date and time manager 226

DateFormatType 344

default receive queue, restoring 239

defaultCategoryRscType 115

deleted records 26, 30

deleting database 177

deleting records 30

desktop link protocol 235

Desktop Link Server 257

Details button 38

Details dialog format 40

dialog boxes (reminder) 190

dialogs 29
design 43
online help 43

digitizer 135
after reset 219
and pen manager 138
and pen queue 72
calibrating 138
dimensions 138
pen stroke to key event 72
polling 226
sampling accuracy 138

DLP 235

dmCategoryLength 109

DmCloseDatabase 214

DmCreateDatabase 177, 181

DmDatabaseInfo 30, 178, 181

DmDatabaseSize 178

DmDeleteDatabase 177, 181

DmDeleteRecord 30

DmFindDatabase 178, 213

DmFindRecordByID 214

DmFindResource 328

DmGet1Resource 328

DmGetDatabase 178

DmGetRecord 178, 214

DmGetResource 328

DmGetResourceIndex 328

DmNewHandle 109

DmNewResource 183

DmNextOpenResDatabase 328

DmOpenDatabase 213

DmOpenDatabaseByTypeCreator 211

DmQueryRecord 178, 214

dmRecAttrCategoryMask 111

DmRecordInfo 111

DmReleaseRecord 178, 214

DmReleaseResource 182

DmRemoveRecord 30

DmResizeRecord 178

DmSetDatabaseInfo 30, 178

DmWrite 198

double taps 37

down arrow 99

doze mode 221

draw state 80

draw window 82

drawing state 80

drivers, restarting 219

dynamic heap
soft reset 218

dynamic memory 28

dynamic menus 101

dynamic RAM 157

E
editable items

labels 44

edit-in-place 29

ErrDisplay 351, 353

ErrFatalDisplayIf 349, 352, 353

errno 279

ErrNonFatalDisplayIf 349

error manager 351–355
try-and-catch mechanism 353

Error sound 208

ERROR_CHECK_LEVEL 352, 353

ErrThrow 354

event loop 67–71
example 67
example program 31

event-driven applications 18

events
naming conventions 27
overview 65–75

EvtGetEvent 84, 222
Palm OS Programmer’s Companion 365



Index
EvtResetAutoOffTimer 74, 239

examples
event loop 67
startup routine 53
stop routine 60

exchange manager 265
launch codes sent by 267

ExgDoDialog 267

F
fcntl 289

feature manager 195–200

feature memory 198

features
application-defined 197
feature memory 198
system version 196

feedback slider 93

Field 79

field objects 97
events 98
line feeds vs. carriage returns 98

file streaming functions 187

finding database 178

FindStrInStr 340

finger navigation 37

FIR 270

flags, launch flags 50

fldEnterEvent 98

fldGadgetEnterEvent 124

FldHandleEvent 98

FldNewField 126

float manager overview 228

flushing serial port 239

FntDefineFont 134, 135

FntSetFont 134

FntWidthToOffset 339

font labels 44

FontSelect 134, 135

Form Bitmap 116

form objects 82
event flow 83

formGadgetDeleteCmd 125

formGadgetEraseCmd 125

formGadgetHandleEventCmd 124

FormGadgetHandler 122

forms 19

FrmAlert 83

FrmCustomAlert 83

frmGadgetDrawCmd 124

frmGadgetMiscEvent 125

FrmNewBitmap 126

FrmNewForm 126

FrmNewGadget 126

FrmNewLabel 126

frmOpenEvent 83, 89

FrmRemoveObject 126

FrmSetGadgetHandler 122

FrmSetMenu 101

FrmValidatePtr 126

FtrGet 197, 198, 335

FtrPtrNew 198

FtrSet 198

FtrUnregister 198

function naming conventions 27

G
gadget resource 122

getdomainname (Berkeley Sockets API) 293

gethostbyaddr (Berkeley Sockets API) 293

gethostbyname (Berkeley Sockets API) 293

gethostname (Berkeley Sockets API) 294

getpeername (Berkeley Sockets API) 289

getservbyname (Berkeley Sockets API) 294

getsockname (Berkeley Sockets API) 289

getsockopt (Berkeley Sockets API) 290

gettimeofday() (Berkeley Sockets API) 294

global find 25
and private records 25

global variables 28
erasing 219

Graffiti 39, 41
customizing behavior 136
Help 137
Help character 137

Graffiti manager 135

Graffiti navigation 38

Graffiti recognizer 71
366 Palm OS Programmer’s Companion



Index
Graffiti reference 40

Graffiti Shift
getting and setting state 136

Graffiti shortcut 102

Graffiti ShortCuts database 137

Graffiti status indicator area
not obscuring 43

graffitiReferenceChr 137

GrfProcessStroke 136

H
handles, allocation 28

handshaking options 237

hard reset 218, 219

hardware button presses and key manager 137

heap fragmentation 28

heap header 164

heap space 28

heaps
and soft reset 161
in Palm OS 1.0 169
in Palm OS 2.0 169
in Palm OS 3.0 169
overview 161
RAM and ROM based 155
structure 164

Help ID 44

highlighting button objects 86

HotSync 30

htonl (Berkeley Sockets API) 294

htons (Berkeley Sockets API) 294

I
icons, application 26

ID
local 163
See Also creator ID

IDE 20

inet_addr (Berkeley Sockets API) 295

inet_lnaof (Berkeley Sockets API) 295

inet_makeaddr (Berkeley Sockets API) 295

inet_netof (Berkeley Sockets API) 295

inet_network (Berkeley Sockets API) 295

inet_ntoa (Berkeley Sockets API) 295

infrared library 269

initialization
global variables 53

input devices 17

insertion point object 132

interface(s) used by net library 280

international manager 325

Internet 278

Internet applications 274

Internet library
RAM requirement 301

interrupting Sync application 224

IR library 269
accessing 271

IrDA stack 269

IrLAP 270

IrLMP 270

K
kernel 223

key events
from pen strokes 71

key manager 137

key queue 73

keyboard 40

KeyCurrentState 138

keyDownEvent 98, 99, 138, 140, 207, 331, 346

KeyRates 138

L
label resource 120

labels, font 44

launch codes 18, 49–63
and returned database ID 58
code example 51
creating 59
handling 24
launch flags 50
parameter blocks 50
predefined 61
sent by exchange manager 267
summary 61
SysBroadcastActionCode 58
use by application 58
Palm OS Programmer’s Companion 367



Index
launch flags 50

launcher 37
application icon name 25

launching applications 50

LCD screen 79

left arrow 99

libPalmOSGlue.a 346

line feeds 98

list objects 105

List resource 79

listen (Berkeley Sockets API) 291

local IDs 163, 174

localization
general guidelines 326

LocGetNumberSeparators 345

locking a chunk 168

Loop-back Test 257

low-battery warnings 25

lstEnterEvent 107

LstHandleEvent 106

LstNewList 126

lstSelectEvent 107

M
mailbox queue 274

managers
naming convention 189
overview 19

masking 118

master pointer table 165

maximizing battery life 222

MemHandleFree 168

MemHandleLock 168, 214

MemHandleNew 109, 167

MemHandleResize 168

MemHandleSize 168

MemHandleUnlock 168

MemMove 169

memory architecture 157

memory management
architecture 157
Introduction 155

memory manager
chunks 160

memory manager See Also data manager

memory manager See Also resource manager

MemPtrNew 168

MemPtrRecoverHandle 168

MemPtrUnlock 214

MemSet 169

menu bar objects 99

Menu Bar resource 79

menu bars
and user actions 100
bits behind 101

Menu Resource 79

MenuAddItem 101

MenuCmdBarAddButton 103

menuCmdBarOpenEvent 103

menuDownEvent 102

menuEvent 101, 102

MenuHandleEvent 101

MenuHideItem 101

menuOpenEvent 101

menus 41
dynamic 101
shortcut 102

MenuShowItem 101

MIME data type 266

Modem Manager 235

modes 38, 220
efficient use 222

modifying Graffiti shortcuts 137

Motorola byte ordering 234

moving memory 169

multitasking kernel 223

N
naming conventions 27

navigation 38

net library
closing 286
open sockets maximum 288
opening and closing 284
OS requirement 275
overview 274–277
preferences 279
RAM requirement 275
368 Palm OS Programmer’s Companion



Index
setup and configuration 279
version checking 287

net protocol stack 274
as separate task 275

netIFCreatorLoop 280

netIFCreatorPPP 281

netIFCreatorSLIP 281

netlib interface introduction 274

NetLibIFAttach 280

NetLibIFDetach 280

NetLibIFGet 280

NetLibIFSettingGet 281

NetLibIFSettingSet 281

NetLibSettingGet 284

NetLibSettingSet 284

NetSocket.c 279

network device drivers 274

network interface 275

network services 273

new serial manager 240

nilEvent 84

notification client 200

notification handlers 203, 204

notification manager 201

notifications 200

ntohl (Berkeley Sockets API) 294

ntohs (Berkeley Sockets API) 294

O
OBEX 270

OmGetCurrentLocale 329

online help 44

on-screen keyboard 40

open sockets maximum (net library) 288

opening net library 284

opening serial link manager 259

opening serial port 237

optimization 28
dynamic memory 28
sorting 28

over the air characters 322

overlays 326

overloading buttons 37

overview of net library 274–277

ovly resource 327

P
packet assembly/disassembly protocol 235

packet footer, SLP 256

packet header, SLP 256

packet receive timeout 259

PADP 235, 257

palettes 128

PalmOSCompatibility.h 48

PalmOSGlue.lib 346

parameter blocks 50

patches, loading during reset 219

PC connectivity 16, 156

pen 80

pen location polling 138

pen manager 138

pen queue 72, 138

pen strokes and key events 71

penDownEvent 87, 88, 89, 91, 92, 93, 94, 95, 98, 106,
107

penUpEvent 87, 88, 89, 90, 91, 92, 94, 95, 98, 101,
107, 136

performance 28

physical scrolling 39

PICT 116

PilotMain 50
code example 51

PluginInfoType 296

pluginMaxNumOfCmds 297

pluginNetLibCallUIProc 300

popSelectEvent 107

Popup list 35, 79

Popup trigger 79

popup trigger object 87

port ID for socket 259

power 17

power modes 220

predefined launch codes 61

prefAlarmSoundLevelV20 217

prefAlarmSoundVolume 209, 217

prefDateFormat 344
Palm OS Programmer’s Companion 369



Index
preferences 39
application-specific 53
auto-off 223
quick switch 39
restoring 25
saving 25
short cuts 137
system 53

preferences database
net library 279

prefGameSoundLevelV20 217

prefGameSoundVolume 209, 217

PrefGetAppPreferences 25

PrefGetPreference 209, 217, 344, 345

PrefGetPreferences 215

PrefSetAppPreferences 25

PrefSetPreference 215

prefSysSoundLevelV20 217

prefSysSoundVolume 209, 217

prefTimeFormat 344

prefWeekStartDay 344

PrgHandleEvent 84

PrgStartDialog 84, 85

PrgUpdateDialog 84

private records 25

procedure alarms 193

progress manager 84

Push button 35, 78

push button objects 90
event flow 91

Q
quick switch, preferences 39

R
RAM 17

RAM store 155

RAM use 156

read (Berkeley Sockets API) 291

real-time clock 226, 227

receive queue, restoring 239

receiving SLP packet 258

records 18, 173

recv (Berkeley Sockets API) 291

recvfrom (Berkeley Sockets API) 291

recvmsg (Berkeley Sockets API) 291

reference number for socket 259

registering for a notification 201

reminder dialog boxes 190

Remote Console 257

Remote Console packets 257

Remote Debugger 257, 259

remote inter-application communication 235

Remote Procedure Call packets 257

remote procedure calls 235, 259

Remote UI 257

repeat control objects 89

Repeating button 78

ResEdit
resource naming conventions 27

reset 218
digitizer screen 219
hard reset 219
loading patches 219
soft reset 219

resource database header 180

resource manager 180
using 181

resources
gadget 122
label 120
storing 180

response time 224

restoring default receive queue 239

restoring preferences 25

resumeSleepChr 207

RGBColorType 128

RIAC 235

right arrow 99

ROM store 155

ROM use 156

ROM, retrieving serial number 224

RPC 235, 259

RS232 signals 236

running mode 221

S
saving preferences 25

sclEnterEvent 122
370 Palm OS Programmer’s Companion



Index
sclExitEvent 122

sclRepeatEvent 122

SclSetScrollBar 121

scptLauncCmdListCmds 296

scptLaunchCmdExecuteCmd 61, 296, 297

scptLaunchCmdListCmds 61, 296

screen layout 42

screen size 15, 79

scrollbar objects 120

scrolling 39

select (Berkeley Sockets API) 291

Selector trigger 78

selector trigger object 88

send (Berkeley Sockets API) 292

sending stream of bytes 238

sendmsg (Berkeley Sockets API) 292

sendto (Berkeley Sockets API) 292

SerClearErr 237

serCtlBreakStatus (in SerCtlEnum) 240

serCtlEmuSetBlockingHook (in SerCtlEnum) 240

SerCtlEnum 239

serCtlFirstReserved (in SerCtlEnum) 239

serCtlHandshakeThreshold (in SerCtlEnum) 240

serCtlMaxBaud (in SerCtlEnum) 240

serCtlStartBreak (in SerCtlEnum) 239

serCtlStartLocalLoopback (in SerCtlEnum) 240

serCtlStopBreak (in SerCtlEnum) 239

serCtlStopLocalLoopback (in SerCtlEnum) 240

serErrAlreadyOpen 237

serErrLineErr 238

serial communication 233

serial link manager 258
opening 259

serial link protocol 235, 255, 256, 258

serial manager 235, 236, 240
prolonging battery life 236

serial number, retrieving 224

serial port 25
changing settings 237
closing 237
flushing 239
opening 237

SerOpen 237

SerReceive 238

SerReceiveCheck 238

SerReceiveFlush 239

SerReceiveWait 238

SerSend 238

SerSendWait 238

SerSetReceiveBuffer 239

SerSetSettings 237

setdomainname (Berkeley Sockets API) 294

sethostname (Berkeley Sockets API) 294

setsockopt (Berkeley Sockets API) 292

settimeofday (Berkeley Sockets API) 294

setup, net library 279

shortcut for menus 102

shortcuts 41

shortcuts, Graffiti 137

shutdown (Berkeley Sockets API) 293

silk-screened icons, not obscuring 43

SIR 270

sleep mode 220, 221
and current time 226
and real-time clock 226

sliders 92

SlkClose 259

SlkCloseSocket 259

slkErrAlreadyOpen 259

SlkOpen 259

SlkOpenSocket 259

SlkPktHeaderType 260

SlkReceivePacket 260, 262

SlkSendPacket 260

SlkSocketListenType 260

SlkSocketPortID 259

SlkSocketRefNum 259

SlkSocketSetTimeout 259

SlkWriteDataType 260

SLP 235, 255

SLP packet 255
footer 256
header 256
receiving 258
transmitting 258

SMF 209

SMFs in databases 212

sndCmdFrqOn 209
Palm OS Programmer’s Companion 371



Index
SndCommandType 210

SndCreateMidiList 213, 218

SndDoCmd 208, 209, 210, 218

SndPlaySMF 208, 209, 214, 218

SndPlaySystemSound 208, 210

SndSetDefaultVolume 215

SndSmfOptionsType 209

SO_ERROR (Berkeley Sockets API) 291

SO_KEEPALIVE (Berkeley Sockets API) 290, 292

SO_LINGER (Berkeley Sockets API) 290, 292

SO_TYPE (Berkeley Sockets API) 291

socket (Berkeley Sockets API) 293

socket listener 260, 262

socket listener procedure 260, 262

sockets, opening serial link socket 259

soft reset 161, 218, 219
dynamic heap 218

sorting 28

sound manager 207–218

stack space 29

standard IO applications 357

startup 49–63

startup routine, example 53

Startup sound 208

state information, storing 25

stop routine example 60

storage heaps, erasing 219

storage RAM 157

StrDelocalizeNumber 345

string manager 133

StrLocalizeNumber 345

strokes
capturing 73

structure elements, naming convention 27

summary of launch codes 61

switching applications 38

switching categories 38

switching views 38

Sync application 223

synchronization messages 25, 26

sys_socket.h 276, 279

SysAppLaunch 58, 140

sysAppLaunchCmdAddRecord 61

sysAppLaunchCmdAlarmTriggered 61, 191, 192

sysAppLaunchCmdCountryChange 61

sysAppLaunchCmdDisplayAlarm 61, 191, 193

sysAppLaunchCmdExgAskUser 61, 267

sysAppLaunchCmdExgReceiveData 61, 268

sysAppLaunchCmdFind 62

sysAppLaunchCmdGoto 62, 269, 340

sysAppLaunchCmdGoToURL 62

sysAppLaunchCmdInitDatabase 62

sysAppLaunchCmdLookup 62

sysAppLaunchCmdNormalLaunch 24, 50, 53

sysAppLaunchCmdNotify 202

sysAppLaunchCmdOpenDB 62

sysAppLaunchCmdPanelCalledFromApp 39, 62

SysAppLaunchCmdReset 219

sysAppLaunchCmdReturnFromPanel 39, 62

sysAppLaunchCmdSaveData 62

sysAppLaunchCmdSyncNotify 62

sysAppLaunchCmdSystemLock 62

sysAppLaunchCmdSystemReset 63, 219

sysAppLaunchCmdTimeChange 63

sysAppLaunchCmdURLParams 63

SysAppLauncherDialog 139

SysBatteryInfo 223

SysBroadcastActionCode 58

SysCurAppDatabase 58

sysFileDescStdIn 292

sysFtrCreator 196

sysFtrNumROMVersion 196

SysGraffitiReferenceDialog 137

SysLibFind 237, 271

sysNotifyEarlyWakeupEvent 206

sysNotifyLateWakeupEvent 206

sysNotifyNormalPriority 203

SysNotifyParamType 203

SysNotifyRegister 201

sysNotifySleepNotifyEvent 206, 207

sysNotifySleepRequestEvent 206

sysNotifySyncFinishEvent 202

sysNotifySyncStartEvent 202

SysNotifyUnregister 201

SysReset 220

sysResIDPrefUIColorTableBase 130

sysResTExtPrefs 327
372 Palm OS Programmer’s Companion



Index
SysSetAutoOffTime 222

SysTaskDelay 222, 227

system event manager 71–75

system keyboard 41

system messages 25, 26

system preferences 24, 53

system tick interrupts 226

system ticks 227
and Simulator 227
on Palm OS device 227

system version feature 196

systemDefaultUIColorsBase 130

SystemMgr.h 61, 197, 280

SystemPreferencesTypeV10 215

SysTicksPerSecond 227

SysTraps.h 47

SysUIAppSwitch 58, 140

T
table objects 104

tAIN resource 26

taps
double taps 37
minimizing 35

tblSelectEvent 105

Tbmp 116

TCP/IP 273

TCP_MAXSEG (Berkeley Sockets API) 290

TCP_NODELAY (Berkeley Sockets API) 290, 292

text manager 325

tFBM 116

TimDateTimeToSeconds 192, 227

time manager 226

TimeFormatType 344

timeout
serial link socket 259

timer 226

TimGetSeconds 227

TimGetTicks 227

timing 227

TimSecondsToDateTime 227

TimSetSeconds 227

Tiny TP 270

title bar 42

transmitting SLP packet 258

transparent bitmap 118

try-and-catch mechanism 353
example 354

TxtCaselessCompare 339

TxtCharBounds 338

TxtCharSize 338

TxtCompare 339

TxtFindString 340

TxtGetNextChar 337

TxtGetPrevChar 337

TxtGlueCharIsVirtual 334

TxtGlueGetHorizEllipsisChar 347

TxtGlueGetNumericSpaceChar 347

TxtGlueParamString 343

TxtIsValidChar 333

TxtParamString 342

TxtReplaceStr 342

TxtSetNextChar 337

U
UDP 273

UI design 16, 33
avoiding dialog box stacking 29
button alignment 43
design elements 78
design philosophy 16, 33
dialogs 43
screen layout 42
title bar 42

UI design rules
clipboard 41
finger navigation 37
Graffiti navigation 38
Graffiti status indicator area 43
overloading buttons 37
ready cursor 40
silk-screened icons 43

UI objects 19
buttons 86
check box 91
control objects 86
field 97
form 82
insertion point 132
Palm OS Programmer’s Companion 373



Index
list 105
menu bars 99
popup trigger 87
push button 90
repeat control 89
scrollbar 120
selector trigger 88
table 104
windows 82

UI resources
custom 122

UI resources, storing 180

UIAS 223

UIColorGetTableEntryIndex 132

UIColorGetTableEntryRGB 132

UIColorSetTableEntry 132

UIResources.r 327

unlocking a chunk 168

up arrow 98

user input 41
cut, copy, paste, undo 41

User Interface Application Shell 223

user interface elements
storing (resource manager) 180

V
vchrHardAntenna 321

vchrRadioCoverageFail 321

vchrRadioCoverageOK 321

version checking, net library 287

version number 30

W
wait cursor 28

Warning sound 208

WChar 331

WinCreateBitmapWindow 118

window objects 82
off-screen 82

WinDrawBitmap 118

WinDrawTruncChars 339

winEnterEvent 83, 88, 101, 107

winExitEvent 83, 89, 107

WinIndexToRGB 129

WinPaintBitmap 118

WinPalette 119, 129

WinPopDrawState 81

WinPushDrawState 81

WinRGBToIndex 129

WinSetDrawWindow 82

write (Berkeley Sockets API) 293
374 Palm OS Programmer’s Companion


	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Conventions Used in This Guide

	Programming Palm OS in a Nutshell
	Why Programming for Palm OS Is Different
	Screen Size
	Quick Turnaround Expected
	PC Connectivity
	Input Methods
	Power
	Memory
	File System
	Backward Compatibility

	Palm OS Programming Concepts
	Programming Tools
	Where to Go From Here

	Good Design Practices
	Designing Your Application
	Integrating Programs With the Palm OS Environment
	Naming Conventions
	Achieving Optimum Performance
	Assigning a Creator ID
	Working With Databases
	Writing Robust Code
	Avoiding Potential Pitfalls

	User Interface Guidelines
	Understanding the Palm OS UI Design Philosophy
	Creating a Palm OS User Interface
	Palm OS Resource Selection: List or Table?

	Localization Guidelines
	Making Your Application Run on Different Devices
	Running New Applications on an Older Device
	Compiling Older Applications With The Latest SDK


	Application Startup and Stop
	Launch Codes and Launching an Application
	Responding to Launch Codes
	Responding to Normal Launch
	Responding to Other Launch Codes

	Launching Applications Programmatically
	Creating Your Own Launch Codes
	Stopping an Application
	Launch Code Summary

	Event Loop
	The Application Event Loop
	Low-Level Event Management
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Summary


	User Interface
	Palm OS Resource Summary
	Drawing on the Palm OS Device
	The Draw State
	Drawing Functions

	Forms, Windows, and Dialogs
	Alert Dialogs
	Progress Dialogs

	Controls
	Buttons
	Popup Trigger
	Selector Trigger
	Repeating Button
	Push Buttons
	Check Boxes
	Sliders and Feedback Sliders

	Fields
	Menus
	Dynamic Menus
	Menu Shortcuts

	Tables
	Table Event

	Lists
	Categories
	Initializing Categories in a Database
	Initializing the Category Popup Trigger
	Managing a Category Popup List
	The Default Application Category

	Bitmaps
	Versions of Bitmap Support
	Drawing a Bitmap
	Color Tables and Bitmaps

	Labels
	Scroll Bars
	Custom UI Objects
	Dynamic UI
	Dynamic User Interface Functions

	Color and Grayscale Support
	Color Table
	UI Color List

	Insertion Point
	Text
	Working With Text As Strings
	Fonts in Palm OS 3.0 and Later

	Receiving User Input
	The Graffiti Manager
	The Key Manager
	The Pen Manager

	Application Launcher
	Summary of User Interface API

	Memory
	Introduction to Palm OS Memory Use
	Hardware Architecture
	PC Connectivity

	Memory Architecture
	Heap Overview

	The Memory Manager
	Memory Manager Structures
	Using the Memory Manager
	Optimizing Memory Manager Performance

	Summary of Memory Management

	Files and Databases
	The Data Manager
	Records and Databases
	Structure of a Database Header
	Using the Data Manager

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager

	File Streaming Application Program Interface
	Using the File Streaming API

	Summary of Files and Databases

	Palm System Features
	Alarms
	Setting an Alarm
	Alarm Scenario
	Setting a Procedure Alarm

	Features
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Memory

	Notifications
	Registering for a Notification
	Writing a Notification Handler
	Sleep and Wake Notifications

	Sound
	Synchronous and Asynchronous Sound
	Using the Sound Manager
	Sound Preferences Compatibility Information

	System Boot and Reset
	Soft Reset
	Soft Reset + Up Arrow
	Hard Reset
	System Reset Calls

	Hardware Interaction
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Retrieving the ROM Serial Number
	Time
	Using Real-Time Clock Functions
	Using System Ticks Functions

	Floating-Point
	Using Floating Point Arithmetic
	Using 1.0 Floating-Point Functionality

	Summary of System Features

	Serial Communication
	Serial Hardware
	Byte Ordering
	Serial Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager

	The New Serial Manager
	Checking for the New Serial Manager
	What's New About the New Serial Manager
	About the New Serial Manager
	Using the New Serial Manager
	New Serial Manager Example
	Writing a Serial or Virtual Device Driver

	The Connection Manager
	The Serial Link Protocol
	SLP Packet Structures
	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager

	Summary of Serial Communications

	Beaming (Infrared Communication)
	Exchange Manager
	Overview
	Exchange Manager and Launch Codes

	IR Library
	IrDA Stack
	Accessing the IR Library

	Summary of Beaming

	Network Communication
	Net Library
	About the Net Library
	Net Library Usage Steps
	Obtaining the Net Library’s Reference Number
	Setting Up Berkeley Socket API
	Setup and Configuration Calls
	Opening the Net Library
	Closing the Net Library
	Version Checking
	Network I/O and Utility Calls
	Berkeley Sockets API Functions
	Extending the Network Login Script Support

	Internet Library
	System Requirements
	Initialization and Setup
	Accessing Web Pages
	Asynchronous Operation
	Using the Low Level Calls
	Cache Overview
	Internet Library Network Configurations

	Summary of Network Communication

	Internet and Messaging Applications
	Overview of the Palm.Net System
	Palm Query Applications
	Palm.Net System Overview

	System Version Checking
	Using Clipper to Display Information
	Launching Other Applications from Clipper
	Sending Messages
	New keyDownEvent Key Codes
	Over the Air Characters

	Localized Applications
	Localization Guidelines
	Using Overlays to Localize Resources
	Text Manager and International Manager
	Characters
	Declaring Character Variables
	Using Character Constants
	Missing and Invalid Characters
	Retrieving a Character’s Attributes
	Virtual Characters
	Retrieving the Character Encoding

	Strings
	Manipulating Strings
	Performing String Pointer Manipulation
	Truncating Displayed Text
	Comparing Strings
	Global Find
	Dynamically Determining a String’s Contents

	Dates
	Numbers
	Compatibility Information
	Notes on the Japanese Implementation
	Japanese Character Encoding
	Japanese Character Input
	Displaying Japanese Strings on UI Objects
	Displaying Error Messages

	Summary of Localization

	Debugging Strategies
	Displaying Development Errors
	Using the Error Manager Macros
	Understanding the Try-and-Catch Mechanism
	Using the Try and Catch Mechanism
	Summary of Debugging API

	Standard IO Applications
	Creating a Standard IO Application
	Creating a Standard IO Provider Application
	Summary of Standard IO

	Index

