INFERGHI 93

24-29 April 1993

Tivoli: An Electronic Whiteboard
for Informal Workgroup Meetings

Elin Rpnby Pedersen*, Kim McCall, Thomas P. Moran, Frank G. Halasz
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304, U.S.A.
Email: elin@dat.ruc.dk, {mccall,moran,halasz }@parc.xerox.com

ABSTRACT

This paper describes Tivoli, an electronic whiteboard applica-
tion designed to support informal workgroup meetings and
targeted to run on the Xerox Liveboard, a large screen, pen-
based interactive display. Tivoli strives to provide its users
with the simplicity, facile use, and easily understood func-
tionality of conventional whiteboards, while at the same time
taking advantage of the computational power of the Live-
board to support and augment its users’ informal meeting
practices. The paper presents the motivations for the design of
Tivoli and briefly describes the current version in operation.
It then reflects on several issues encountered in designing
Tivoli, including the need to reconsider the basic assumptions
behind the standard desktop GUI, the use of strokes as the
fundamental object in the system, the generalized wipe inter-
face technique, and the use of meta-strokes as gestural com-
mands.

INTRODUCTION

Most of the early attempts to build computer support for
meeting rooms, such as the Colab project [11], included
whiteboard-sized displays to provide a shared focus of atten-
tion for the meeting participants. However, these displays
were controlled at a distance by keyboard and mouse (just
like a workstation). Meeting participants did not interact di-
rectly with the display surfaces as they would with ordinary
whiteboards. Empirical studies of collaborative work at
shared drawing surfaces [2,12] show that the physical actions
around the surface itself are as important as the actual marks
made on the surface to support the collaboration. Thus, the
Liveboard system [7] was created at PARC to provide a “di-
rectly interactive, stylus-based, large-area display.”1 The
Tivoli project was started to develop software for the Live-
board technology addressing two goals: (1) to discover and

1. Other large-surface displays are also becoming available,

such as the Smart Technologies 2000 and the WACOM Meeting
Staff.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1993 ACM 0-89791-575-5/93/0004/0381...$1.50

explore the user interface techniques appropriate to this new
kind of technology and (2) to discover and implement the
functionality needed to actually support small working meet-
ings at the Liveboard.

Nature of the User Interface

The basic direction was influenced by our early Liveboard ex-
periences. After a dozen Liveboards had been deployed
throughout PARC in meeting rooms and common areas, the
most widely-used application was Whiteboard [7], a simple
multipage pen-based image editor. It simulated a whiteboard
by allowing freehand drawing and erasing. This system pro-
vided for the kind of unselfconscious, freeform scribbling
that is prevalent in small group interactions, and it confronted
us with the issues of the appropriate interaction techniques for
and the basic nature of this genre of user interface.

The basic function of the board is to support interaction be-
tween people (and in this we agree with [4] that it is a “con-
versation board”). As such, the most important criteria for the
user interaction with the board are to be unselfconscious —so
as not to draw the attention of the participants from their in-
teraction with each other — and to be fluid — to allow unhin-
dered expression of ideas. While it is true that the user’s “text-
graphic performance” [9] involves the creation of various
kinds of text-graphic objects, it does not follow that users
should be required to declare these as they would be by a
structured drawing program like MacDraw. In this sense we
disagree with [4]. Further, we deliberately do not provide for
handwriting recognition, for it would be disruptive in this
context.

The Liveboard, as one component of a vision of ubiquitous
computing [13], “blends into the woodwork” and appears to
be just a familiar whiteboard. To follow through on this, the
board should also behave as a simple whiteboard, at least ini-
tially. This not only allows first-time users immediate use of
the board, but also allows users to build from their current
work practices involving whiteboards.

Pen-based computing is still in its infancy. Operating system
support, such as PenPoint [6] and Microsoft Windows for Pen

*Elin R. Pedersen’s current address is: Department of Computer
Science, Roskilde Umiversity, DK-4000 Roskilde. Denmark.

391

24-29 April 1993

INFERCHI "33

Figure 1: Photograph of Tivoli running on a Xerox Liveboard being used in an informal meeting.

Computing, is just now being provided. We want to discover
appropriate ways to utilize the pen as an input device. The
motions that are natural for a pen are quite different from
those for a mouse. Because we are operating on a large sur-
face, we want to keep as much facility “at hand”™ as possible.
Gesturing (i.e. creating marks to be interpreted as commands)
is an obvious extension beyond drawing and erasing. Other
pen-based systems are oriented to using marks as annotations
and gestures as commands over structured material, such as
form-filling applications. Our situation is somewhat different
in that all our material consists of informal handmade marks,
and we want to preserve this look and feel. This raises new
user interface issues that we are beginning to address.

Functionality for Small Working Meetings

Tivoli is targeted at supporting small working meetings, be-
cause this kind of meeting activity is prevalent at PARC and
is well suited to the Liveboard. By “working” meetings (as
opposed to, say, presentations) we mean meetings where the
participants work closely together on a problem or an idea.
For these a scribbling surface is useful for generating, com-
municating, and clarifying ideas and for keeping track of in-

392

formation. Such a working group usually needs to be small:
up to about 8 people (also, the physical size of the Liveboard
image, 46" x 32", precludes more people being able to gather
around it effectively). Because meetings are small and infor-
mal, there is no official facilitator or scribe; all participants
can have access to the board.

Our goal with Tivoli was to extend the functionality of a sim-
ple whiteboard program while preserving its basic features,
spirit, and style. The early ideas for new functionality were
numerous and diverse — much more than we could possibly
implement. As a design strategy to sort these out, we devel-
oped a series of 14 scenarios of various kinds of meetings —
varied both in content (design, review, brainstorming, admin-
istrative meetings) and in style (small to medium, informal to
structured, co-located and distributed meetings). Each scenar-
io was a 2-9 page narrative description of a meeting and its
use of available wall displays, including whiteboards, flip-
charts, copyboards, and Liveboards. Half the scenarios were
documentaries of actual meetings, and half were envision-
ments of possible meetings. Writing these scenarios served to

INFERGHI 93

24-29 April 1993

F@ Tivoli 1.0 R
(c) Capyright fftice title Slide No.
1991-1992
A rights reservd 1

e
ALt

Undo: Clipboard: Pen functlons:

[o1 o)) s)
@@iimﬁ]

Set widths: Erase types:
EHE) e e PP B
_______ draw wipe select

Set pen characteristics Set erase method .

Figure 2: Tivoli window with blank slide.

integrate and concretize inputs from a variety of people, in-
cluding both designers and potential users.

Analysis of these scenarios resulted in the identification of a
coherent core of functionality needed across all meeting
types and the classification of the remaining functionality
into different research thrusts. The core functionality includ-
ed simple pen and gesture scribbling and editing, multiple
pages, saving and retrieving, printing, and importing images.
The thrusts involved remote collaboration (shared drawing),
meeting management tools, and integration with other “ubiqg-
uitous” devices. Tivoli was designed to implement the core
functionality on an architecture that anticipated the explora-
tions into the extended functionality. In this paper, we de-
scribe and discuss Tivoli 1.0, the first release that implements
the core functionality.

A SCENARIO OF TIVOLI USE

The following scenario illustrates the main features of Tivoli
1.0 and motivates many of the design issues discussed in the
next section. Elin, Kim, Tom, and Frank are starting a design
meeting in which they intend to discuss the Tivoli object hi-
erarchy and the possibility of implementing the “decora-
tions” that appear on the Tivoli drawing surface as objects
within that hierarchy. Elin goes to the Liveboard, which is
displaying the Tivoli window shown in Figure 2. The win-
dow at this point consists of a blank slide for drawing in and
control panels along the bottom and left edges.

In a long box at the top of the slide Elin writes “Objects in the
Tivoli World.” She does this as naturally and directly as if
she were writing with a marker on a whiteboard. Then she
lists the main classes of user-generated ohjects, “Stroke,”
“Character,” and “Image.” Kim points out that “Images” are
now called “Pictures,” so Elin taps the wipe button at the
bottom of the window. The pen’s cursor turns into an eraser.
As she sweeps the pen over the word “Images,” each stroke

she’d drawn is erased as a unit as soon as she touches it. She
taps the draw button, sees her usual drawing cursor again,
and writes “Picture.”

F@ Tivell 1.0

Slide o,

i'%'rwolﬁwf%f /n 7%6 \/D M/G\/ 1
) US@J O bj@C% f//ﬂés

ok
567;77; mi YLG -

HE ﬂp\C 7LM}/Q

B

&
&

EBQE

. ndo: Clipboard: Pen functions: St wikths: E . (E’;]ni’":
& =
(i) B8] Bl Gl Ey QR E0E @ ...

hpeer)

Figure 3

Elin wants a heading for these terms, but needs to create
room above them to write it. She taps on the select button
and draws a circle around the three terms, which then become
selected. Then, she draws a line to show how far she wants to
have the selected objects moved, which they do when she
lifts up the pen. Above them she writes “User Object types.”
The result is shown in Figure 3.

Tom complains that Elin has been writing with too fine a pen.
So she circles her list again and taps on the button for a thick-
er pen width. All the selected strokes get thicker as can be
seen in Figure 4., But she failed to completely include the first
‘U’, which she deals with separately. But she has still left out
the title at the top. She again taps the wipe button. But rather
than just sweeping across the title (which would erase it), she

393

24-29 April 1993

INFERGHI Y3

first “dips” the pen into the button representing the preferred
pen width. Now as she wipes it across the title strokes, they
are all repainted at the new width. A tap of the draw button
gives her back her regular pen.

@ Tivol 1.0 —
0 Copprgt |8 ticls pom— Slide o,
e

e ij;g%f inthe ivoli Wy ld 1

P

S troke .

C havacter 7

|\ Pctwe

..........................
@ m Unda: Clipbaard: Pen functions: 5ot widths: Erase types:
[) B B P REEARY BE ..,)

Figure 4

Elin starts a list of system-generated objects or slide “deco-
rations.” The list reaches the bottom of the slide, but Frank
mentions a couple of items that were left out and really be-
long near the top of the list. Elin draws a horizontal line
across the slide (what we call a “tear” gesture) where she
wants more room and quickly taps the pen twice. Everything
below the line gets selected, and she moves it down. Then she
writes the desired items in the space just opened up. Some of
the list is no longer visible, so she taps a small arrow button
to scroll the slide. A scroll indicator near the arrow reflects
where the current viewport is on the entire slide. The scrolled
slide is show in Figure 5.

5] Tivah 1.0 —

o C'/yamdLﬁV‘
= ﬁm‘um
S)/Sh”” Olp)‘ec‘}'c
S)ide Number

TJ"HQ Box

l'hSerfM\n Al caveT
Cuvsors

Selec biow Mark e

% Undo: Clipb g: functlons: Sat widths; :

\l_‘&} @@E} ::nl ’::‘:uﬂmd

Figure 5

Now it’s time to list issues concerning the objects, and Elin
decides to start listing them on a separate slide; so she taps
the New Slide button and gets a blank slide. At the top she
writes “Issues” and then lists several issues as people men-
tion them. A slide list to the left of the slide area contains a
numbered list of all of the slides she has created. She taps on
the numbers to switch between the two slides.

394

The group gets embroiled in a debate on the virtues of spe-
cial-case representations and display routines. Elin is taking
notes on the arguments, but soon decides this discussion be-
longs on a separate slide; so she selects it all and cuts it with
a pigtail gesture. She then creates a new slide and taps the
Paste button. The strokes that had been cut show up on the
new slide. They remain selected, as seen in Figure 6, inviting
her to move them, which she does.

Tiveli 1.0 N

Now. olaj‘cjf - c‘m.,a‘)Lru.‘;\‘x

Spcialrred User I fy,
specralzed roudting s

Retain 9»,{- Ol’_) HIP-(L,

FC:WW $ vcc_m}-@‘Uf
‘?’l"n7$ In fpsTtm

,’1:.':: ; i+ orm 04/.5 o, :
el ey
— Hu'ltnvv:d'fli ihf legjor]Il“ H]’r’ f“h cd ‘l;.
wites r/l«'flias toufirey e d“‘f a g
@ _ﬂ,irr Use of 'In}/gfi” “‘}"‘" rer
=&

oy
':I
i3

"

As the discussion starts to get very technical, Frank begins to
worry about its implications for the display and object man-
agement aspects of the implementation. Kim remembers that
he once prepared a slide for a formal talk illustrating the im-
plementation modules. He goes to the Liveboard, taps the
Get button, and selects from a dialog window the file con-
taining his slides for that talk. Those slides are all added into
the current folder of slides, which now number eight.

Unsure of which of the five new slides was the desired one,
Kim taps the INDEX entry at the top of the slide list. This
produces a system-created slide which consists of the title ar-
eas from the other slides, as shown in Figure 7. He sees that
the desired Architecture slide is number seven. He thinks
about just going to that slide, but decides instead to clean
things up by deleting the unwanted slides. He uses the slide
index to go to each slide in turn and delete it by tapping the
Delete this slide button.

Then he goes to the Architecture slide and starts annotating
it with circles and arrows. The resulting slide is shown in Fig-
ure 8. Occasionally he erases some of these, toggling back
and forth between drawing and erasing by a rapid tap-tap of
the pen. Because the illustration is in the background it is in-
delible. Only the annotations get erased. At one point he eras-
s too much, deleting one arrow too many. He taps on the
Back stroke button until he has recovered the lost arrow.

Elin wants to propose a new twist, but Kim is monopolizing
the group’s attention, so Elin draws a picture on a piece of pa-
per before the idea escapes her. When the opportunity pre-
sents itself she sticks the paper into the Liveboard’s attached
scanner, taps the Scan button, and waits a minute. Then she

INFERCHI 3

24-29 April 1993

{;‘:‘%] Ob (L‘/'f /n #Z TVD)IMIU
*) Ss ue s

3

4 Rationale of Functionality

w

Rationale of Non-functionality

6 Architecture (as seen by the user)

Architecture (as seen by the implementor)

(3 ()l () el) (T TTTTTT
m@aiﬁﬁa @

The Display Manager
SEE e Pee fHepee EE..)

Figure 7

Tiveli 1.0

a|

oe——
Siida Mo,

[.’.":‘Z",.'"-:. ﬂa’ "Architecture (as seen by the implementor) 4

INDE |

—

Recognizer

| =

Translator Object
Liaison Dispatch \ e
! 4
Historian inaaitl
S Time

n functions: Erass types:

EHEHE = Ve P pEe EE

€ pan characterist

Figure 8
presses a button that imports the scanned image as the back-
ground of the current slide. Then she explains it and further
annotates it.

Before anything is decided, the meeting’s time has expired.
Frank wants a hardcopy of the slides, so he taps the Print
button, selects the 4 slides per page option so that they*ll
all show up on one sheet, and sends it off to the printer. Tom
is nominated to see whether he can condense the discussion
to anything actionable. Frank finally taps the Save button. A
dialog window comes up that suggests a default file name un-
der which to save it. But Frank thinks up a better one, and for
the first time in the entire meeting he uses the Liveboard’s at-
tached keyboard to specify the desired file name.

A few hours later, Tom runs Tivoli on his office workstation
and reads in the folder in order to review the meeting. Imag-
ining that this folder will form the basis for the next meeting,
he decides to create another slide sumnmarizing outstanding
issues. But since his workstation has no stylus for drawing,
he decides to do most of his writing with the keyboard.

The group’s next meeting starts by reading in and reviewing
Tom’s revised version of the folder.

DESIGN FEATURES AND ISSUES

We now discuss some of the more interesting design features
of Tivoli and the user interface design issues that they raise.

Assumptions Reconsidered

User interface design has converged onto a broad set of prin-
ciples defining the generic graphical user interface (GUI).
However, the GUI is tied to a set of assumptions about the
technology (such as the mouse and the keyboard) and the us-
age situation (a single user at a workstation on a desk). Both
our technology and our usage situation are different for Tivo-
li, and we found ourselves reconsidering many tacit assump-
tions. We give three examples:

Pen vs. mouse

A mouse is designed for pointing, whereas a pen is also for
writing and drawing. Thus gestural techniques are much
more natural for a pen than a mouse. A mouse is indirect in
the sense that computation mediates the relationship of the
physical movement of the mouse to the movement of the cur-
sor on the display. On the other hand, the Liveboard pen is
pointed directly at the surface of the display. There does not
necessarily need to be a cursor; it should be where the pen is
pointing (within the limits imposed by calibration error).
This directness provides for a more direct interaction with
objects on the display. However, the system needs to respect
this physical directness. For example, we use an OpenLook
scroll bar to implement the slide list. When the user points to
a scroll arrow, the scroll arrows ride up and down the scroll-
bar like an elevator. With the mouse this is fine, because the
cursor is adjusted to ride the elevator. But with the pen the el-
evator slides out from underneath the stationary pen, throw-
ing the user off the scroll arrow.

Very Large Interactive Surface

Even with a large workstation display, the user can have a
reasonable overview of the display from the normal viewing
distance. A user standing at a Liveboard, however, is too
close to have such an overview. Thus, we have had to adjust
the size and placement of pop-up messages to make sure the
user will always notice them. Also, tools such as buttons and
menus can be physically out of the user’s reach on the Live-
board. (This becomes apparent when running off-the-shelf
workstation software on the Liveboard.) This implies some
obvious design constraints, such as not requiring users to
reach the top of the display to press a button. More generally,
it places greater emphasis on keeping user control at the pen,
especially for frequent actions and for actions that occur
within the flow of scribbling. This is another motivation for
utilizing gestural commands, which are issued from the pen
at the place of application. The problem with gestures is that
novice users may not remember them, and so we provide re-
dundant screen buttons where possible. For example, the user
can toggle between drawing and erasing either by a double
tap of the pen or by reaching down and tapping the draw and
erase buttons at the bottom of the display.

Multiple Users and Pens

A Liveboard is large enough to have more than one person
working at it at a time — a natural working situation [11, 12].
The Liveboard is designed to have three pens to accommo-

395

24-29 April 1993

INFERGHI 93

date multiple users, and Tivoli was designed to operate with
multiple pens. One consequence is that tools on the display
are shared. For example, we cannot highlight an icon to show
the current pen line thickness, since it can be different for dif-
ferent pens. This is yet another argument for gestural actions,
which are localized to specific pens and do not have to rely
on shared on-screen tools. In general, in our implementation
we have had to distinguish pen state from system state (see
also [3]). This distinction is not always clear-cut. For exam-
ple, we consider a selection of objects to be part of a pen’s
state, and thus a second user cannot operate on the first user’s
selection (without taking the first pen). Another example is
that we mark all actions with the ID of the pen that produced
them, and we restrict the undoing of actions to be by the same
pen (i.e, pen, cannot undo the relocation of strokes per-
formed by pen,, although pen, can erase those strokes).

Atomic Objects

Tivoli has an informal look and feel that is much like that of
paint programs. But a major feature of the Tivoli design that
distinguishes it from paint programs is that drawings are rep-
resented as stroke objects, not as pixel map images. A stroke
is simply a series of line segments describing the path of the
pen from the time it touches down on the display surface until
it is lifted. A stroke is created over time, and the system can-
not wait until it is completed before displaying it (as it does
with keystrokes). Therefore, we provide an “inner loop” of
feedback that instantly inks the display surface as the pen is
moved over it. Only after the pen is lifted does the system
create a stroke object.

The stroke-level granularity of this representation manifests
itself when operating on the drawing. For example, erasing is
done by wiping over the surface with the pen in erase mode.
As the eraser goes over each stroke, that whole stroke disap-
pears (i.e., the stroke object is deleted from the representa-
tion). This has proved to give a very nice “power boost”
when erasing small to medium size strokes, such as hand-
writing (sweeping across a word gets rid of it without having
to fuss with every little pixel). But this sometimes causes sur-
prises when a long stroke (e.g., a large box or a long arrow)
disappears when only a small portion of it has been touched
by the eraser. The general issue is that objects are not homo-
geneous, and operations need to be designed to have a desir-
able effect. This issue needs much further exploration.

Another advantage of strokes as atomic units is that they pro-
vide objects for holding properties (e.g., color and thickness).
Stroke properties can be changed, e.g., the color of a whole
stroke can be changed, no matter how entangled it is with
other strokes. And because they are geometrically defined,
strokes are transformable.

Generalized Wiping

Tivoli expands the notion of object-based erasing to general-
ized wiping. Wiping is a user’s back-and-forth motion across
the display surface with a pen, which in wipe mode is called
a wiper. The wiping motion dynamically selects objects as
the wiper passes over them. A wiper has an associated oper-
ator, which it applies to objects as it selects them. Erasing is
accomplished when the wipe operator is DELETE. When the
user enters wipe mode, the default operator is DELETE; and

396

thus a novice user can simply think of this as an eraser. But
the wipe operator can be changed just by tapping any on-
screen button with the wiper. For example, tapping the red
button changes the wipe operator to MAKE-RED, after which
wiping makes all selected objects red. This has proved to be
a natural and powerful technique for dynamically selecting
and applying operations to objects.

Gestures (Meta-Strokes)

We have noted several motivations for the use of gestural
techniques with the pen. By the term “gesture” we mean a
meta-stroke, 1.e., a stroke that is not just taken to be an ele-
ment of the drawing, but is to be interpreted as a command.
A gesture is drawn as a regular stroke and then interpreted.
This has the beneficial effect in a group situation that the
non-drawing participants can see the gesture before the ac-
tion takes place and thus not be surprised by unexpected be-
havior. The most common gesture is the selection gesture,
which is drawn as a closed loop of arbitrary shape around a
set of objects, defining them as the selection. Subsequent
gestures then operate on the selection: a pigtail gesture de-
letes the selected objects; a stroke that starts inside the selec-
tion loop moves the selection to the other end of the stroke
(the encircled objects remain selected so that they can be op-
erated on again).

One of the main design issues is how to indicate that a stroke
is a gesture. There are several classes of techniques, involv-
ing devices (e.g., a gesture pen vs. a drawing pen), modes
(e.g., gesture mode vs. drawing mode), “tense modes” [5]
(e.g., holding down button on the pen to indicate a gesture),
and so on. We attempted to avoid modes in the first version
of Tivoli, and so we explored a different technique: the post-
fix indicator, which converts the preceding stroke into a ges-
ture. For example, to select and delete a word, first draw a
loop around the word, then give the indicator (which repaints
the loop in the distinguished gesture color), then draw a pig-
tail.2 The postfix technique allows gestures to be embedded
in the drawing process. For example, a loop can be drawn
(which at this point is just a regular stroke) and, if it isn’t cor-
rect, erased and redrawn before indicating that it is to be in-
terpreted as a gesture.

We explored a double tap of the pen as the postfix indicator
(by analogy to a double-click on a mouse button). There is an
inherent ambiguity with a double tap during drawing: how to
distinguish it from two intentionally small drawing strokes,
such as a colon or a quote mark. Thus a user writing “To:”
might find that the system attempts to interpret the “0™ as a
gesture (unsuccessfully because the “0” is an empty loop)
and all that is left is a “T*.>

Faced with this difficulty in distinguishing double taps, espe-
cially for users with a “choppy” style of handwriting, we
have moved to using a pen button as the gesture indicator in
the more recent versions of Tivoli.

2. The pigtail does not require an indicator since it is indicated
implicitly by context: When a selection is made, the system expects
the user to next operate on it: and thus any stroke starting within the
selection loop is taken to be a gesture.

INFERGHI 93

24-29 April 1993

STATUS AND FUTURE DIRECTIONS

Tivoli was first released in December 1991 and since then
has been installed as the primary application on the Live-
boards at PARC. It runs on Sun Sparcstations and utilizes the
X Window System. It is implemented in C++ and currently
uses the XView toolkit to implement control panels and but-
tons.

Tivoli 1.0 is only the first step in our attempt to build a col-
laborative meeting tool for the Liveboards. Among the many
improvements and extensions we hope to eventually explore,
we are currently focusing our effort on three issues: (1) a
multi-site, shared version of Tivoli; (2) making the interface
more accessible, or perspicuous, for casual users; and (3) ex-
ploring how Tivoli can be used to support specific meeting
practices.

Multi-Site Tivoli

Our vision is to make Tivoli a true collaborative tool, sup-
porting both multiple users standing shoulder-to-shoulder
around a single Liveboard and multiple users utilizing two or
more geographically-separated Liveboards (This draws in-
spiration from other work on shared drawing systems. such
as [2, 8]. The version of Tivoli described in this paper is im-
plemented to support only the single Liveboard case. We
have implemented a multi-site version of Tivoli (Tivoli 2.0)

that preserves all of the functionality in the current version
[10].

Although the current version supports multiple users around
a single Liveboard. the majority of our experience to date has
been with situations where only a single user operates Tivoli
at any given time. It remains an open question whether our
current design will provide appropriate support for the mul-
tiple user (single Liveboard) case. In particular, the current
Tivoli includes little mechanism for coordinating the actions
among multiple users (e.g., preventing one user from chang-
ing slides while another is drawing), with the idea that such
coordination can be accomplished using social rather than
technological means. As we gain experience with the multi-
ple user situation, we will be able to assess if this is in fact the
case.

Another usage scenario for Tivoli involves a single meeting
room containing a single Liveboard communicating with a
(pen-based) laptop for each meeting participant. We hope to
explore how the principles we are using to design a multi-site
Tivoli will apply this co-located, multi-host case.

The Casual User

The design of Tivoli represents a deliberate balance between
two often conflicting goals: interface simplicity and func-
tionality. On the one hand, our goal was to design a Live-

3. Actually, the situation was much worse. The double tap was
also loaded with a second function: to indicate a switch between
drawing and wiping mode. A double tap would first cause the pre-
vious stroke to be interpreted as a gesture; if the gesture recognizer
did not recognize it, then it caused a mode jump. Thus, an inadvert-
ent double tap usually threw the user into wipe mode without warn-
ing, a dangerous move to say the least! This mode toggling
functionality was removed from double tap in subsequent versions.

board interface that maintains the natural, facile,
immediately obvious feel of a conventional whiteboard. In
particular, we were interested in maintaining the white-
board’s ease-of-use to casual (or never-before) users. Live-
boards were designed to be placed into public meeting
spaces. We wanted to make it easy for a person who has nev-
er used a Liveboard to walk up and figure out how to accom-
plish what they could on an ordinary whiteboard (draw in
multiple colors, erase) plus a few obvious extensions (change
slides, print) with little or no training. Meeting this require-
ment tended to push the Tivoli user interface towards sim-
plicity, with the control panel displaying only a few
straightforward buttons.

On the other hand, the Liveboard is a computational device.
Another of our goals in designing Tivoli was to use this com-
putational power to the user’s advantage in supporting and
augmenting the capture and organization of ideas in meet-
ings. Accomplishing this goal tended to introduce sophisti-
cated features and functionality into Tivoli (e.g., the
generalized wipe operations) whose interface was either
complex or non-intuitive or both. Moreover, the more such
features we added to the program, the more widgets and but-
tons needed to be added to the interface.

It’s clear from the feedback we’ve received from our user
community that our current user interface design has erred in
favor of increased functionality over intuitiveness, or per-
haps ‘interface perspicuity’. The never-before user who
walks up to a Liveboard tends to find the interface so com-
plex that she has some difficulty figuring out how to do the
basics. We consider this a major problem and are exploring a
revised user interface design which improves the walk-up-
ability of Tivoli without decreasing the level of functionality.

Support for Specific Meeting Practices

A very explicit goal of the Tivoli project is to develop re-
search prototypes with sufficient functionality and robust-
ness that they can be put into widespread use in real meeting
situations. Tivoli 1.0 is the first step in achieving this goal.
Tivoli is currently in use on the 10 Liveboards throughout
PARC, and we are beginning to accumulate feedback from
users engaged in a variety of tasks and meeting types. At
minimum, this feedback will guide us in making incremental
improvements to Tivoli. More importantly, we are interested
in examining in some detail how Tivoli is utilized for specific
meeting practices. Our goal is to better understand what
functionality could be added to Tivoli in order to support or
augment these meeting practices. For example, Tivoli is fre-
quently used to support brainstorming meetings. We are cur-
rently exploring how Tivoli could be expanded to support
typical brainstorming activities such as list-making, catego-
rization, and voting without altering its fundamental white-
board-like nature.

In some sense, our search to expand Tivoli to provide support
for more specific meeting practices reflects the other side of
the tension between a simple, facile, whiteboard-like inter-
face and an application that takes maximum advantage of the
computational power behind the Liveboard to support its us-
ers’ work practices. Clearly, the design challenge for this
kind of system is to satisfy both of these goals.

24-29 April 1993

INFERCHI "33

REFERENCES

1

398

Sara A. Bly. A Use of Drawing Surfaces in Different Collabo-
rative Settings. Proceedings of CSCW 88 Conference on Com-
puter Supported Cooperative Work. Portland, 1988, pp. 250-
256.

Sara A. Bly and Scott L. Minneman. Commune: A Shared
Drawing Surface. In SIGOIS Bulletin, Massachusetts, 1990, pp.
184-192.

Eric A. Bier, Steve Freeman. MMM: A User Interface Archi-
tecture for Shared Editors on a Single Screen. Proceedings of
the ACM Symposium on User Interface Software and Technol-
ogy. UIST'91, 1991.

Tom Brinck, Louis M. Gomez. A Collaborative Medium for the
Support of Conversational Props. To appear in Proceedings of
CSCW 92 Conference on Computer Supported Cooperative
Work. Toronto, 1992.

William Buxton. Chunking and phrasing and the design of hu-
man-computer dialogues, Proceedings of the IFIP World Com-
puter Congress, Dublin, Ireland, 1986, pp. 475-480.

Robert Carr, Dan Shafer. The Power of the PenPoint. Addison-
Wesley. 1991.

Scott Elrod, Richard Bruce, David Goldberg, Frank Halasz,
William Janssen, David Lee, Kim McCall, Elin R. Pedersen,
Ken Pier. John Tang and Brent Welch. Liveboard: A large in-
teractive display supporting group meetings, presentations and
remote collaboration. Proceedings of CHI '92 Conference on
Human Factors in Computing Systems, Monterey, CA, 1992.

12

13

Hiroshi Ishii, Minoru Kobayashi, Jonathan Grudin. Integration
of Inter-personal space and shared workspace: ClearBoard de-
sign and experiments. Proceedings of CSCW 92 Conference on
Computer-Supported Cooperative Work, Toronto, 1992. pp.
3342

Fred Lakin, John Wambaugh, Larry Leifer, Dave Cannon,
Cecelia Sivard. The Electronic Design Notebook: Performing
Medium and Processing Medium. Visual Computer: Interna-
tional Journal of Computer Graphics, 214-226, August 1989.

Kim McCall. Thomas Moran. Bill van Melle, Elin Pedersen.
Frank Halasz. Design principles for sharing in Tivoli, a white-
board meeting-support tool. Position paper for the Workshop
on Real Time Group Drawing and Writing Tools, CSCW 92
Conference on Computer-Supported Cooperative Work, Tor-
onto. 1992.

Mark Stefik, Greg Foster, Danny Bobrow, Ken Kahn, Stan
Lanning, Lucy Suchman. Beyond the Chalkboard: Computer
support for collaboration and problem solving in meetings.
Communications of the ACM, 30(1). 1987. Also in Irene Greif,
editor, Computer Supported Work: A Book of Readings, Mor-
gan Kaufmann Publishers, 1988, pp. 335-366.

John Tang. Listing, Drawing, and Gesturing in Design: A Study
of the Use of Shared Workspaces by Design Teams. Ph.D. The-
sis. Stanford University, Department of Mechanical Engineer-
ing, 1989.

Mark Weiser. The Computer for the 21st Century. Scientific
American, Sept. 1991.

