CISC 836 Design of Usable Computing Systems

T.C. Nicholas Graham

http://stl.cs.queensu.ca/~graham/cisc836

Examples of Usability Problems

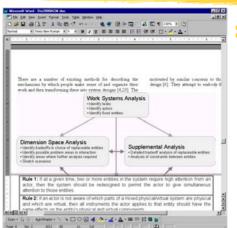
- ₩ ...etc.

System Hard to Learn

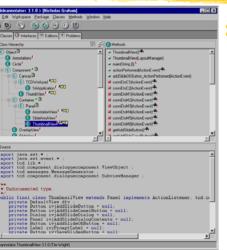
- ★Telephone on my desk
 - □ E.g., buttons for "Ring Again", "Redial"
 - ∨oice mail
 - ⊠listen to message = 2
 - ⊠delete message = 76

 - **⊠**incomplete prompts

System Hard to Use


- ₩Web Banking System
 - □ Different screens for
 □ Different screens for
 □ Different screens for □ Different screen scree
 - ■Balance enquiry
 - E.g., paying visa requires navigating > 10 screens

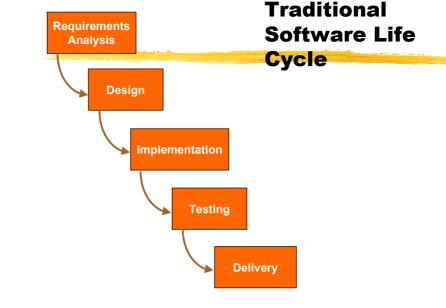
System Untrusted


- **#**E-bay online auction
 - ○Worry about safety of credit card use
 - ○Worry about honesty of vendors

System is Buggy, Poorly-Supported

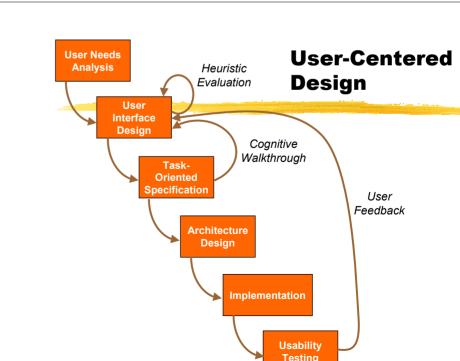
- #Positioning pictures in MS-Word
 - Positioning sometimes random, hard to tune
 - ○Updating crossreferences repositions figures!

System Doesn't Match Needs of Users


- IBM VisualAge for Java in University Environment
 - □ Each machine can support only one user workspace
 - Incompatible with "walk up" terminal use in student labs

Development of Interactive Systems

- - Expensive, batch, select user group
- # 1970's: Glass teletypes, mini-computers
 - Cheaper, interactive, somewhat select
- # 1980's: Bitmapped displays, novel I/O
 - Cheap, highly interactive, available
- # 1990's: GUI's, networking
 - Extremely cheap, connected, ubiquitous
- # 2000's: Information appliances, wireless
 - Extremely cheap, connected, mobile


Developers

- **Can we develop systems that**
 - ☐ fit the organization?
 - ☐ fit the user?

Problems with Traditional Life Cycle

- ■Usability problems caught late
 - Expensive to repair when found
 - Developers become attached to designs

Goal of User-Centered Design

- #Involvement and consideration of target users throughout process
- #Detection of problems early

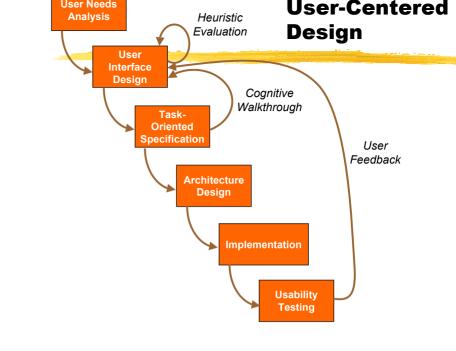
User Needs Analysis

- **∺**User characterization
- ★Modeling user activities, user tasks
- ★Modeling context of use

User Interface Design

- **Creative process**
 - Brainstorming, metaphor, scenarios, prototyping
- **#**User participation
- #Evaluation through heuristic analysis, user feedback

Task-Oriented Specification


- ★Description of how user tasks carried out with system
- **≋**Extension of task model
- #Bridges gap between design and implementation
- **#**Evaluation as cognitive walkthrough

Usability Testing

**Testing with members of user group

**Can be done with prototypes or real

#Can be done with prototypes or real system

User Needs Analysis

- **#Modeling**
 - **△**User

User Characterization

- # People
 - △Age, gender, cultural characteristics
 - ∑E.g. Radhakrishnan's field medical systems for India can't assume literacy

 - ☑E.g., checkboxes have different meaning in Chinese
 - ☑E.g., red=danger, red=stop not universal
 - ☑E.g., "thumbs up" sign not good in Italy

User Characterization

- - reward structure
 - ☑e.g., does working more efficiently lead to bonuses or layoffs?
- # User background
- # Usage constraints
 - ∨oluntary vs mandatory

Task Analysis

- # In context of his/her job/activity, what does person do?
- # User task model
 - ☐ Generic tasks performed by user independent of any implementation
- - □ Tasks supported by some system
- **# Stages**
 - Activity analysis

Context of Use

- # Physical environment
 - Noise level, lighting level, mobility requirements, encumbrances on user
 - □ E.g., system allowing police to create traffic tickets is used in noisy, mobile environments where police officer is on foot

Task Modeling

Discovering User Tasks

- # Activity analysis, ethnographic study
 - ○Observing, interviewing people in work context
- - □ Brainstorming
- # Hierarchical Task Model

Example User Task Model

#Choosing and enrolling in courses for M.Sc. degree in CISC

Informal Task Model

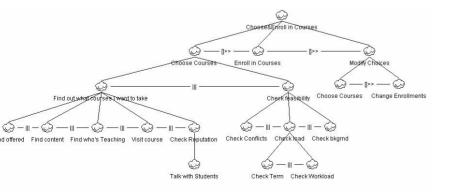
- ₩ Figure out what courses I want to take
- # Find out how many courses I should take per term
- # Find out what term courses offered
- ₩ Find out what time courses offered
- # Find out about Ph.D. breadth rules
- # Discover conflicts
- # Prioritize conflicting courses
- # Enroll in courses
- # Enroll in a course

€ ...

Heuristics

- # Tasks may be at different levels
- # Express tasks from user's point of view
- # HTA will organize tasks properly

Informal Task Model

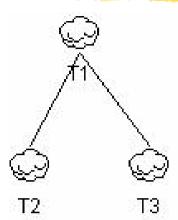

- # Figure out what courses I want to take
- # Find out how many courses I should take per term
- # Find out about professors
- # Find out what term courses offered
- # Find out what time courses offered
- # Find out about Ph.D. breadth rules
- **#** Discover conflicts
- ☆ Prioritize conflicting courses
- # Enroll in courses
- # Enroll in a course
- ₩ ...

Structure tasks into hierarchy representing task decomposition

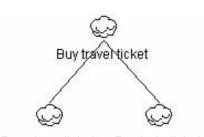
Hierarchical Task Analysis

- - ○Order in which they must be performed
 - ☑ Information flow between tasks

Hierarchical Task Model for Course Selection+Enrollment

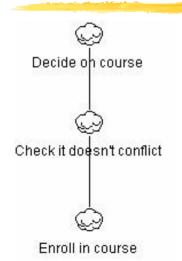


Hierarchy

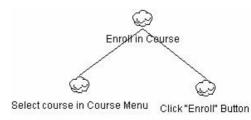

- # Hierarchy represents how tasks are decomposed into subtasks
 - Read levels as "In order to do T1, I need to do T2", or "In order to do T1, I wish to do T2"

Hierarchy

- **X** Tasks at same level represent different options or different tasks that have to be performed


Common Errors

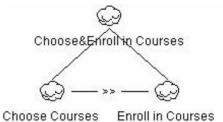
Buy plane ticket Buy train ticket


- #Hierarchy does not represent abstraction
 - ☑ Hierarchy represents task decomposition
 - □"In order to buy a travel ticket, I need to buy a plane ticket"

Common Errors

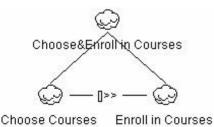
- #Hierarchy does not represent sequence
 - "In order to check a course doesn't conflict, I have to enroll in the course"

Common Errors

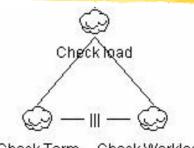


- # In User Task Model, tasks do not represent specific interactions with system
 - △ Later we'll look at system task models where such tasks are modeled, but that follows UI design

Temporal Relations


- - anv order

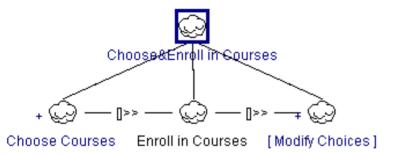
Enabling


- ★ Specifies second task cannot begin until first task performed
- # I.e., I cannot enroll in my courses before I've chosen which courses to take

Enabling with Information Flow

Specifies second task cannot be performed until first task is performed, and that information produced in first task is used in second

Interleaving



Check Term Check Workload

- **X** Tasks can be performed in any order, or at same time
- # In order to check the load of a set of courses, I need to consider what terms they fall in and to consider how much work each course represents
- # I can do this in any order

Optional

Some tasks need not be performed to achieve the goal task

Summary of Task Modeling

- # Use activity analysis, ethnographic study, discussion with users to understand user tasks
- ★ Brainstorm informal list of tasks
- ★ Arrange and refine tasks, organizing into hierarchy
 │
 Write descriptions of tasks
- # Define temporal relationships between tasks

In-Class Exercise

★Develop user-task model for ordering a pizza