# CISC 839 Software Engineering of Usable Computing Systems

#### **T.C. Nicholas Graham**

http://stl.cs.queensu.ca/~graham/cisc836

# Techniques for Stimulating Creative Design

- **#**Metaphor
- **#Brainstorming**

### **Metaphors**

- ★ Something familiar to user from real world

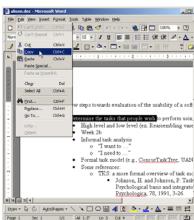
   Comparison

   Comp
- # Helps to structure user interface
- # Helps user understand structure, predict behaviour of user interface

### **Example Metaphors**

- **#Window**
- **Copy/paste**
- **#**Desktop

#### **Window**






### **Cut/Paste**



Source: http://www.jm.columbia.edu/alumni/history/galleries/1950-1959\_gallry.asp?photo=9



### **Desktop**





### **Metaphors**

- **#**Should help users to predict results of actions
- **∺**Alternative approach

### **Brainstorming**

- Method for group of people to come up with design ideas
- #Use large blackboard, large sheets of paper, etc.

### **Brainstorming**

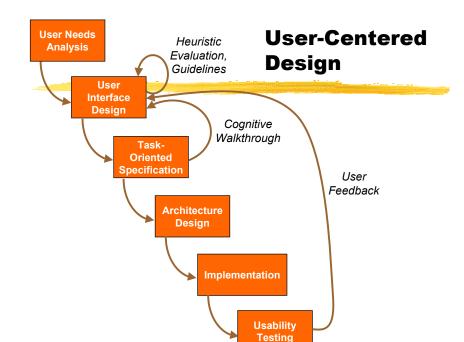
- #Allow people to throw out ideas
  - Record ideas
  - Most ideas will get thrown out, so don't worry about evaluating them
  - Sometimes a series of "dumb" ideas may lead to a good one

  - Never criticize/put down ideas during brainstorming

### **Brainstorming**

**\*\*Can lead to quick, fluid development of ideas, creative thought** 

### **In-Class Exercise**


- #Design a system for ordering pizza from your PC
- **#**Metaphor is:
  - ☐Going for a trip to the zoo

### **User Interface Evaluation**

### **Evaluating User Interfaces**

- # Important to make evaluation early, continuous
- **#** Techniques:
  - Heuristic evaluation

  - □ Usability testing (user observation)



### **Heuristic Evaluation**

- # User interface specialists study user interface design in depth
- **K** Looking for known problems from their experience

### **Guidelines**

- # Guidelines encode experience
- # In effect, allow non-specialists to perform their own heuristic evaluation
  - ☐ Guidelines help structure system evaluation by telling designers what problems to look for

### **Cognitive Walkthrough**

- **\*\*** Walk through interface in context of user trying to perform a task
  - ☐ Identify core tasks
  - Show how they would be accomplished by walking through interaction steps with user interface
- ★ Shows difficulties with task-action mapping
  - □ E.g. task hard to perform, task not supported at all
- # Helps identify areas where operations should be optimized

# **Approaches to Cognitive Walkthrough**

- # Informal
  - - write out steps followed by user in narrative prose
  - - □ cutouts of interface elements that can be manipulated by hand
  - △ Mockups
- # Formal
  - - ■UML sequence diagram
  - □ Task-oriented specification
    - ☑Refine ConcurTaskTree to action level
- # Formal approaches are great, but significant information can be gained from cheap, informal approaches

### **Usability Testing**

- # Test usability of system by observing users
- # Users given specific task to accomplish
- # Observe to see what problems arise
- \*\* Can be performed with low fidelity prototype or with real system
  - ☐ Trade off quality of feedback vs how early it can be obtained

# Approaches

- **# UWE Project, HP** [Jeffries et al., 1991]
- # Applied four methods separately to compare results
- # Error types
  - Consistency (25% of problems)
  - □ Recurring -- one time or recurring?
  - ☐ General -- affecting several parts of UI or specific to single part?

Heuristic

Evaluation

105 core errors

Identifies more

Identifies more

- Doesn't require

Requires UI

expertise

evaluators

implementation

Requires several

serious problems

problems

Low cost

identified

# Kinds of Users for Testing [Booth]

- # Friendly users

  - □ Can make suggestions that naïve users perhaps could not
- # Hostile users
  - □ People with no investment in system
- - ☑If progress of naïve users recorded, can be later replicated by designers
  - □ Form of informed cognitive walkthrough
  - Saves expense of live users for incremental modifications of system

# 10 Steps for Observing Users [Gomoll and Nicol]

Usability

31 core errors

problems

Requires UI

expertise

problems

– Requires
implementation

- Misses consistency

High cost

Identifies serious,

Avoids low priority

recurring problems

Testing

identified

Guidelines

35 core errors

recurring, general

identified

Identifies

problems

software

developers

Misses some

Can be used by

Does not require

implementation

severe problems

Cognitive

35 core errors

identified

Walkthrough

Helps define user

Can be used by

- Does not require

implementation

Needs task model

recurring problem

- Misses general,

software

- Tedious

developers

goals, assumption

- ★ Over all goal: observe real users using system, discover usability problems
- # Important that this be carried out in a controlled setting, as opposed to asking them for their opinion after the fact, or using a questionnaire

### **Step 1: Set up Observation**

- # Write the tasks
  - □ Design tasks for users to work through
  - Should be real tasks, as motivated by task model
  - Should be specific, phrased in terminology of user
  - □ Focus on part of product under study
- - People with same experience level as user
  - Should not be people familiar with the product
- # Create realistic situation
  - Natural environment, free from interruptions
  - □ Can use tape, video

### **Step 2: Describe Purpose of Observation**

⊯ Emphasize you are testing the product, not the users
 □ Want them to understand that if they run into problems, the problem is with the system, not them

# Step 3: Tell user they can quit any time

- **X** Contributes to user's feeling that they are not being tested
- **#** Lowers stress
- # Basic ethical requirement on human experimentation

### Step 4: Talk about, demonstrate equipment in room

- # Describe any recording, monitoring equipment
- **\*\*** Removing mystery in process to lower anxiety of users

## Step 5: Explain how to "think out loud"

- # As users are carrying out their task, they should say their thoughts out loud
  - □ This takes some practice requires demonstration
- # Important for users to be comfortable
  - ☐ If they are nervous, they will not talk out loud

# Step 6: Explain that you will not provide help

- ★ Users should be able to solve their problems on their own
- # Difficult for tester not to jump in!!
- # If they are really stuck, give threshold of 3 minutes, then give just enough help to proceed
- ※ Tell them "Even though I won't be able to answer most
  of your questions, I'll note them and answer them later"

  △ And do!

### **Step 7: Describe tasks and introduce product**

- # Give them written instructions
- - □ Do not demo the parts of the product you are trying to evaluate

### **Step 8: Begin observation**

- ★ Ask if they have any questions
- ★ Begin once questions have been answered

### **Step 9: Conclude observation**

- # After the users are finished
  - explain what you were trying to find out
  - □ answer any remaining questions (including the ones you wrote down while they were carrying out the task)
  - ☐ discuss any interesting behaviours you want the user explain
  - △ask users for over all impressions

### **Step 10: Use the results**

★ Remember to blame the system, not the user!!!