CISC 839
Software Engineering of
Usable Computing Systems

T.C. Nicholas Graham

http://www.cs.queensu.ca/~graham/cisc836

righer-Level Architectures
for Interactive Systems

Callback-based architectures are error-prone
Higher-level architectures structure user
interface more closely to its design

Model-View-Controller [Krasner and Pope]
PAC [Coutaz et al.]
PAC-Amodeus [Nigay]

Example: Notepad

_loix]
File Edit Format Help
To Do List Al

-- CISC 8319 assignment
-- Eat lunch

-- Watch hockey game
-- Sleep

MVC Architecture

State updates
Requests

Change
notifications

Controller

User inputs Display updates

Model-View-Controller

State updates
Requests

Change
notifications

Controller

Display updates

User inputs

Model

Represents underlying
state of application

Presents an abstract
representation of the
user interface’s
contents

Notepad: Model is a
string representing the
content of the text
editor

Model-View-Controller

State updates
Requests

Change
notifications

Controller

User inputs Display updates

View

Responsible for
updating the display
Model notifies View of
changes to Model

View makes requests
to Model for new
Model state, updates
display

Model-View-Controller

State updates

Change
notifications

Controller

User inputs

View

Notepad: View notified
when document
changes

e.g., new text entered,

text deleted, ...

View requests updated
text from Model,
modifies the text on
the display

Model-View-Controller

State updates
Requests

Change
notifications

Controller

User inputs Display updates

Controller

Responsible for
processing user inputs
I.e., mouse and
keyboard events
Updates the state of
the Model

Notepad: Controller
processes key clicks,
sends modifications to
the Model

New text, delete key,
etc.

Benefits of MVC

Separation of concerns

Input and output are completely independent

Implies changes in input mechanisms don't affect
output; changes in output format don't affect

input
No callbacks

MVC Deployments

Smalltalk-80
Java Swing
Model/Delegate

Microsoft Foundation Classes
MFC Document-View architecture

Java Swing Model/Delegate

Del eg_ate
Gomponent

R T

 “Buttordl.*

Model

e
i Selectahlel-:

Buttonhodet

‘ Source: http://developer.java.sun.com/developer/online Training/GUI/Swing2/shortcourse.htmi#JFCMVC

Java Swing Model/Delegate

Model = MVC Model
Delegate = MVC View + Controller

MFC Document/View

Document = MVC Model

View = MVC View + Controller
View uses event handlers for input
See examples from week 6
Standard classes:

CView = base class for View
CDocument = base class for Document

MFC Document/View

AddView ()

OnUpdate ()

Document

Document Operations

AddView Attaches a view to the document.

GetDocTemplate Returns a pointer to the document
template that describes the type of the
document.

GetFirstViewPosition Returns the position of the first in the
list of views; used to begin iteration.

GetNextView Iterates through the list of views
associated with the document.

GetPathName Returns the path of the document's
data file.

GetTitle Returns the document's title.

IsModified Indicates whether the document has
been modified since it was last saved.

RemoveView Detaches a view from the document.

SetModifiedFlag Sets a flag indicating that you have
modified the document since it was last
saved.

SetPathName Sets the path of the data file used by
the document.

SetTitle Sets the document's title.

UpdateAllViews Notifies all views that document has
been modified.

CView Operations

GetDocument Returns the document associated with
the view.

OnDraw Called to render an image of the
document for screen display, printing,
or print preview. Implementation
required.

OnUpdate Called to notify a view that its
document has been modified.

The PAC Architecture

The PAC Architecture Style

Supporting development of user interfaces

Conceptual architecture that can be mapped to
multiple concrete architectures

Agent-based
Program decomposed into a set of agents, each
responsible for some part of the task of interacting
with the user

Example: PAC Architecture

for a Set of Buttons

Assume an interface has a set of

buttons controlling navigation
“Back” means return to previous page
in history, “Forward” means go
forward to last page we moved back
from (if there is one)

7 Queen's University | Kingston, Ont

Eile,&di\yiw LCommunicator He

Back Forwan Reload Har
v Muok?rks \g‘ Location:lhttp:.-"
P \\
Button

List of pages visited

« “Back” decrements current page counter

* “Forward” increments current page counter

« If current page is front of list, “Back” button is disabled

« If current page is end of list, “Forward button is disabled

+» Going to a new page enqueues that page after the current

Current page

Starting with Just a Button...

Buttons have E
o , % Enabled button
A /abel (e.g. “Back”, “Forward”) Lo
A state (disabled, enabled) —
. - W ’ Disabled button
Buttons have local behaviour o]
“Rollover” - become highlighted —
when mouse moves over them Rolled over” button
Become depressed following
= Depressed button
mouse dOWﬂ {Coﬁdn’tmake accurate picture
Become released following = ofthis one)
mouse up

Button Abstraction

A button’s state is therefore

Label (String value)

Is Enabled? (Boolean value)

Is “rolled over”? (Boolean value)

Is depressed? (Boolean value)
Therefore, the state of a button is captured in three
Boolean values and a string value

In PAC, this state is called the button’s Abstraction

other PAC components

PAC Components

PAC architectures
constructed from a set of
components

A
Each component

Presentation
composed of three facets »

Presentation. handles user
input and redraws the /

display
Abstraction: underlying
state of interactive entity

Control: mediates
communication between
Presentation, Abstraction Inter-facet communication,
and other PAC components typically event or method call

other PAC components

other PAC components

PAC Button
Presentation Abstraction
Abstraction
Java object containing L
methods to set/get >
Button label

Depressed/released
state

Enabled/disabled state
Rolled-over state /

other PAC components

other PAC components

PAC Button
. Presentation Abstraction
Presentation
Accepts mouse input
mouse down
If button enabled,
depresses button

mouse up
If button depressed,
releases button
mouse enter

If active, puts button in
rollover state

mouse leave

If rolled over, removes
rollover state

other PAC components

other PAC components
A

PAC Button

. Presentation Abstraction
Presentation
Responsible for redrawing L
button >

When changes in enabling,
depressed/released, rolled

over, redraws with
appropriate animation, GIF

image

other PAC components

Question: Why doesn’t
input part of Presentation
simply handle redrawing?

Bullding an Architecture with
PAC Components

+-— Queen's Univerzity | Kingston, Ont.

Flleﬂ.\\flw Cornrunicatar - He

Require a PAC component for each ¥ A
button = Bac:k Forwar Heload H‘O[

) g Bookm ks \!‘ Location: W
Require a component for =N
navigation
g Button

Require components for the rest of
the browser, such as the display of
the web page List of pages visited ‘ ‘ ‘ ' ‘

* “Back” decrements current page counter Current page

* “Forward” increments current page counter

« If current page is front of list, “Back” button is disabled

« If current page is end of list, “Forward button is disabled

+ Going to a new page enqueues that page after the current
page, sets current page to that page

PAC Architecture

Back Button Forward Button Web Page

Navigation Component

v Presentation Abstraction
Abstraction contains queue of
pages, current page pointer
If there are pages before L J
current page, enables back
button

If there are pages after
current page, enables
forward button

Actions from buttons
manipulate current page

No Presentation facet
required

other PAC components

Scenario: Go back One Page

Back Button

Forward Button

Web Page

Initial state: current page is end of queue,
therefore “Forward” button is inactive. l.e.,
we have never clicked the back button

Current page

Scenario: Go Back One Page

Back Button

Current page

Forward Button

Web Page

Final state: current page is moved back
one position in the queue; the new web
page is displayed, and the forward button
becomes enabled

Scenario: Go Back One Page

1. User clicks mouse down; P informs C that
mouse clicked down; C informs A that button
depressed; C informs P that button should be
redrawn; P redraws button

Back Button

Forward Button

Web Page

Scenario: Go Back One Page

2. User releases mouse; P informs C that
mouse released; C informs A that button
released; C informs P that button should be
redrawn; P redraws button; C informs
Navigation that Back button has been clicked

Back Button

Forward Button Web Page

Scenario: Go Back One Page

3. C informs A that current page moved back

one. C informs forward button that it is enabled.
C informs web page that new page needs to be
drawn.

Back Button Forward Button Web Page

PAC-Amodeus

PAC Amodeus

Integrate ARCH and PAC
Dialogue component implemented by PAC
agents
Presentation facets interact with Logical
Interaction component

Abstraction facets interact with Functional
Core Adapter

PAC-
Amodeus

Interaction
Objects /

Logical
Interaction

Interaction
Objects

: Physical
h)‘ > |nteraction

g

Dialogue

Domain
Objects

7

Interaction
Objects

Functional

Core Adapter

Domain
Objects

Functional
Core

Constraint-Based
Architectures

Examples

Garnet
Myers 89
RendezVous

Hill 92
CIP

Borning, Freeman-Benson ‘92

Constraints

Constraints allow the values of one object
to depend on the values of fields of other
objects

Changes in field values propagated via
constraints

No need for callbacks or notifications

Display Objects and Text

|t : DisplavText

Text = “Hello”
X1 =0
Yl =0

X2 = X1 + length (Text)
Y2 = Y1 + length (Text)

Constraint
Dependency

/b . DisplavBox |

X1l = t.X1 - 3
¥l = £.Y1 - 3
X2 = t. X2 + 3
Y2 = £.Y2 + 3

Output:

Hello

Modify:

t.Text := “Guten Tag'

New Output:

Guten Tag

Pointer Variables

[t : DisplayText | [b : DisplayBox |

Text = “Hello” P =t

i =0 Constraint X1 = P->X1 - 3
¥l =0 Dependency Y1 = P->Y1 - 3
X2 = X1 + length (Text) X2 = P-3X2 + 3
Y2 = Y1 + length (Text) Y2 = P-sY2 + 2

Example Interface

JEFEH

(ML)

Ronaldo MacMalapie
232 Klarsicht Ave.
555-8236 <po>

Constraints in this
Interface

Clicking on a letter button changes the
current card, changes the letter in the tab

Editing the last name may change the
highlighted letter button, letter in the tab

| cp : CurrentPerson |

FirstName = “Ronaldo”

LastName = “MacMalapie” —\
Address = “232 Klarsicht Ave.”

Phone = “555-8236" Constraint Ronaldo MacMalapie

Dependency 232 Klarsicht Ave.

555-8236

Constraint
Dependency

\ ¢l : Currentletter |

Letter = c¢p.LastName

Constraint

Constraint Dependency
Dependency

1 : Letter

\ 1b - LetterBOX|

[

