
CISC 839
Software Engineering of
Usable Computing Systems

T.C. Nicholas Graham
http://www.cs.queensu.ca/~graham/cisc836

Implementing Groupware

Examples of Asynchronous
Groupware Products

aEmail
aDiscussion Forum
aShared document space
aShared repository

Outlook
Express

WebCT
Forum

Lotus
Notes

http://www.alvea.com/ehtml/know_screen_shot.htm

Bugzilla Examples of Synchronous
Groupware

aInstant messaging
aMultiuser video games
aElectronic meeting systems

http://www.icq.com/icqtour/simple/user-menu.html

ICQ Instant
Messaging

Dark Age of Camelot
Multiuser Video Game

WebArrow/Conference
Electronic Meeting System

Clover Model of
Communication [Calvary et al., 1997]

Communication Coordination

Production

Clover Model
aPeople convey

information to each
other in three ways
(termed spaces)
`Communication: direct

exchange of information,
e.g., speech, gestures,
facial expression, gaze
information

`Supported by (e.g.)
telephone, videophone

Communication Coordination

Production

Clover Model
a Production: exchange of

information through some
artifact being collaboratively
produced

a E.g., shared whiteboard,
shared text editor

a Supported by (e.g.) MS
NetMeeting, multiuser Video
Annotator, Ultima Online

Communication Coordination

Production

Clover Model
a Coordination: organization

of how collaboration is to be
enacted. E.g.,
`In a chess game, use turn-

taking
`For patient’s medical records,

use workflow
`For software development, use

locking at class level
`For collaborative drawing, use

social protocols

a Supported by workflow
systems, concurrency
control algorithms

Communication Coordination

Production

Concurrency Control

Problem

aTwo people simultaneously update the
same shared context
aUpdates may conflict
aConcurrency control: algorithms that

ensure:
`All users’ views of the shared context agree
`In case of conflicts, result is intuitive

Example: Shared Text Editor

Edit Edit

Synchronize

Example: Shared Text Editor

Edit

SynchronizeEditor Model
(Text of shared

document)

Text Editor
(View/Controller)

Request /
Update

Edit

Editor Model
(Text of shared

document)

Text Editor
(View/Controller)

Request /
Update

Editor Model

aInsert (int pos, char c)
`Inserts c before position pos, where pos ≥ 1

aDelete (int pos)
`Deletes character at position pos,

where pos ≥ 1

Example: Shared Text Editor

Type ‘x’
after ‘d’

SynchronizeEditor Model
“abcdef”

Text Editor

Delete ‘c’

Editor Model
“abcdef”

Text Editor

Example: Shared Text Editor

Insert(5, ‘x’)

SynchronizeEditor Model
“abcdef”

Text Editor

Delete (3)

Editor Model
“abcdef”

Text Editor

Example: Shared Text Editor

SynchronizeEditor Model
“abcdxef”

Text Editor

Editor Model
“abdef”

Text Editor

Example: Shared Text Editor

Insert(5, ‘x’)

Editor Model
“abcdxef”

Text Editor

Delete (3)
Editor Model

“abdef”

Text Editor

Example: Shared Text Editor

SynchronizeEditor Model
“abdxef”

Text Editor

Editor Model
“abdexf”

Text Editor

Problem

aReplicated data
aPerforming operations in different order results

in divergent values in text editor model
`Users will see different documents on their screen

Goals of Concurrency Control

aMaintain consistent versions of models for all
users

aProvide intuitive result when conflicts occur
`E.g., could solve conflicts in text editor by setting

document to “”. Not an intuitive result!

aMaintain adequate feedthrough, feedback times
`Many algorithms make feedback times unacceptable

Locking

aBefore performing update to shared context,
must obtain a lock

aNegotiated amongst all instances of shared
context
`If another user holds the lock, must wait until it is

released

aRelease lock when update has been propagated
through system

Example: Locking

Editor Model
(Text of shared

document)

Text Editor
(View/Controller)

(1) Edit

Editor Model
(Text of shared

document)

Text Editor
(View/Controller)

(2) Update

(3) Request Lock

(4) Grant Lock

(5) Commit
Update

(6) Propagate Update
(7) Release
Lock

(7a) Notify

(8a) View

(7b) Notify

(8b) View

Locking

aSimple to implement
aIntuitive results
`No conflicts

aPoor feedback time
`Must go over network to obtain lock before user sees

result of change
⌧Bad for interactive tasks like text editing

Rollback

aDetect conflicts via timestamp
aWhen conflicts occur
`Roll back to earlier state
`Reapply updates in canonical order
⌧I.e., same order on each machine

Timestamps

aSimply increment a counter every time an
update is performed
`Counter is timestamp

aInclude timestamp in messages carrying remote
updates
`Specifies version of model against which update

applied

aIf remote update has older timestamp than
model, a conflict has occurred

Example: Rollback

Type ‘x’
after ‘d’

SynchronizeEditor Model
“abcdef” (0)

Text Editor

Delete ‘c’

Editor Model
“abcdef” (0)

Text Editor

Example: Rollback

Insert(5, ‘x’)

SynchronizeEditor Model
“abcdef” (0)

Text Editor

Delete (3)

Editor Model
“abcdef” (0)

Text Editor

Example: Rollback

SynchronizeEditor Model
“abcdxef” (1)

Text Editor

Editor Model
“abdef” (1)

Text Editor

Example: Rollback

Insert(5, ‘x’):0

Editor Model
“abcdxef” (1)

Text Editor

Delete (3):0
Editor Model

“abdef” (1)

Text EditorTimestamp

Conflict
detected
since
timestamp of
remote
update < local
timestamp

Example: Rollback

Insert(5, ‘x’):0

Editor Model
“abcdxef” (1)

Text Editor

Delete (3):0
Editor Model

“abdef” (1)

Text EditorTimestamp

Pick a winner:
insert goes
first. Therefore,
must rollback
delete and
reapply it.

How to pick a
winner: Flip a
coin. Each site
uses a rand
function starting
from a common
seed. Therefore
all sites can “flip
a coin” and get
the same result.

Example: Rollback
Roll back: Delete (3)

Editor Model
“abdxef” (2)

Text Editor

Apply: Delete (3)

Editor Model
“abcdef” (0)

Text Editor

Pick a winner:
insert goes first.
Therefore, must
rollback delete
and reapply
updates.

How to pick a
winner: Flip a
coin. Each site
uses a rand
function starting
from a common
seed. Therefore
all sites can “flip
a coin” and get
the same result.

Example: Rollback

Apply:
Insert (5, ‘x’);
Delete (3)

Editor Model
“abdxef” (2)

Text Editor

Editor Model
“abdxef” (2)

Text Editor

Rollback

aImmediate feedback
aRequires ability to roll back all operations
`May be hard to program, costly in resources
`Some operations can’t be rolled back – e.g., file

save, send email, “launch” button on nuclear missile

aRollbacks may be confusing to user
`See result of input, then it’s changed later

Operation Transform

aSimilar to rollback, except:
`When conflict detected, instead of rolling back,

transform operations
`Requires fixup operations that undo and reapply all

in one operation

Operation Transforms

aExample: Should have executed:
`Insert (5, ‘x’) ; Delete (3)

aActually executed:
`Delete (3)

aNow want to execute:
`Delete (3)-1 ; Insert (5, ‘x’) ; Delete (3)
`≡ Insert (4, ‘x’) ; Delete (3)-1 ; Delete (3)
`≡ Insert (4, ‘x’)

“abcdef” → “abdxef”

“abdef”

“abdxef”

Operation Transforms

aNo need to roll back
`⇒No need to save earlier states

aNeed to provide “fix up” operations for pairs of
operations in model
`n2 operations
`Some may be hard to implement
`Some may not have intuitive fix ups

Concurrency Control

aThree methods:
`Locking
`Rollbacks
`Operation Transform

aSee next week’s readings for more types

Groupware Architectures

aClock
aDragonfly
a…plus see next week’s readings

Outline

aWhy is developing groupware hard?
aProgramming abstractions for groupware
`Declarative development of groupware
`Conceptual architectures as programs

aFlexible implementation of groupware
`Annotations for implementation
`The Dragonfly implementation architecture

aTimings

Synchronous Critical Path
Scheduling Application

Synchronous Critical Path
Scheduling Application

Telepointers

•WYSIWIS
interaction

GroupScape Web Browser GroupScape Web Browser

TelepointerTelepointer

Slaved ViewSlaved View

Two users

• Annotating tape of
usability testing
session

• Standard VCR
controls

• Annotations saved
with video frame

Synchronous Video
Annotator

Why is Developing GW
Hard?

aSynchronizing Relaxed WYSIWIS Views
aConcurrency
`Race Conditions

aDistribution
`Networking, Latency, Scalability, ...

aMultimedia
`Synchronizing, Integrating MM Streams

aUser-Centered Design

Outline

aWhy is developing groupware hard?
aProgramming abstractions for groupware
`Declarative development of groupware
`Conceptual architectures as programs

aFlexible implementation of groupware
`Annotations for implementation
`The Dragonfly implementation architecture

aTimings

Conceptual Architectures

High level architecture style hides:
aDistribution
aNetworking
aConcurrency control
...allowing developer to concentrate on

functionality of application
aE.g., Clock, PAC, ALV, C2, ...

Clock Architecture Style

aConceptual architecture that is also a program
aClockWorks visual programming environment
aConnectors encode temporal properties
`Concurrency control
`Temporal media

Clock Architecture Style

aTwo views
`Layered MVC
`PAC where Control encoded by connectors

• Extended with layering,
constraints, multimedia

State updates

Change
notifications

Requests

User inputs Display updates

ViewController

Model

MVC Architecture Output

MVC in Clock
architecture style

View
Controller

Output
Model

mouseButton "Down" =
select myId.

view =
if currentSelection = myId then

yellowBox (Text myId)
else

whiteBox (Text myId)
end if.

View
Controller

Output
Model

mouseButton "Down" =
select myId.

view =
if currentSelection = myId then

yellowBox (Text myId)
else

whiteBox (Text myId)
end if.

view =
beside [

button “shared”,
hspace 10,
button “private”

].

Layered Architectures in Clock

• Updates send information up tree

• Constraints pull information down

setNodePosition “2”
(200, 321) Trigger view update

for node 2

User 1 User 2

Applying the Clock architecture
to Groupware

• Shared context at root of tree

• One instance of UI per user

Information
provided by
session
manager

Trigger view update
for node 2

User 1 User 2

view =
beside (

map cpmView allUsers).

view =
Window myUserId myHost (…).

Tree Structure

aView composition
aData visibility
aConcurrency control
`Avoiding race conditions between user inputs

aSynchronization of multimedia streams
`Sharing sound, video, animations

Concurrency Control
% Create a new node
mouseButton “Down” =
all [addNode getCount mousePosition,

incrementCount].

U s e r 1 U s e r 2
g e tC o u n t
a d d N o d e (… ,…) g e tC o u n t
in c r e m e n tC o u n t a d d N o d e

(… ,…)
in c r e m e n tC o u n t

Concurrency Control
% Create a new node
mouseButton “Down” =
all [addNode getCount mousePosition,

incrementCount].

Possible execution order

Concurrency control

aEach user’s action leads to a transaction
`request* update

aTransactions must be executed in a
serializable fashion

% Create a new node
mouseButton “Down” =
all [addNode getCount mousePosition,

incrementCount].

• Synchronization of
multimedia streams

• Integration of
temporal, static
media

Multimedia Groupware
Extending MVC for Temporal Media
• Constraints remove time from temporal media
• Composition allows integration of temporal and static media

frameNumber

Pool of Frames

Model

View as Image

Constraint

tick = advanceFrame. view =
VideoFrame “use.mpg” frameNumber.

Run-time
System

tick

advanceFrame frameNumber

current video frame

Video playback
application

Architecture of
Video Annotator
• whiteBoard composes
current video frame with
current annotations

• constrained count value
gives current frame
number

Clock Architecture Style:
Summary

aConceptual architecture is part of program
aConstraints help in:
`Synchronizing relaxed WYSIWIS views
`Multimedia

aConcurrency control guaranteed by
connectors
aVisual editor for architectures

Outline

aWhy is developing groupware hard?
aProgramming abstractions for groupware
`Declarative development of groupware
`Conceptual architectures as programs

aFlexible implementation of groupware
`Annotations for implementation
`The Dragonfly implementation architecture

aTimings

Strategies for Cheating
Latency

aSacrifice group response time
aReduce granularity of group actions
aTake turns
aRisk roll-backs
aBuffer
aSpend CPU, memory, bandwidth

Notifications
Updates /
Requests

Server

Client

Cache

Updates

Requests
Updates / Requests

Updates

Notifications
Updates /
Requests

Server

Client

Space of Implementation
Techniques

aConcurrency control: none, optimistic, pessimistic

aTopology: tree, star, mesh, point

aReplication: centralized, partially replicated, replicated

aCache activity: passive, active

aCache location: standard, mirror

aNetwork delivery: lossless, lossy

aNetwork order: FIFO, any

What Strategy is Best?

Depends on:
aApplication characteristics
`Symmetry, roles, synchronicity

aHardware characteristics
`How cheap is bandwidth, latency, CPU,

memory?

Annotations for
Distributed

Implementation

• Client / Server Split:

• Replication

•Concurrency Control

Conceptual
Architecture

Transform

Hide issues of:
• Concurrency control
• Distribution
• Networking
E.g. Clock, PAC*, C2, ALV

Choose:
• Centralized or Replicated?
• Pessimistic or Optimistic?
• Caching?
• Hybrid?

Distributed
System

Conceptual
Architecture

Developers concentrate of functionality
of groupware application, not
distributed implementation

• Hybrid implementation
• Dynamic reconfiguration

Distributed
System

Dragonfly
Implementation

Architecture

Encapsulates design choices for:
• Replication
• Caching
• Concurrency Control
• Client-Server Split

Conceptual
Architecture

Annotations

Distributed
System

Implementation
Architecture

Performance
Feedback

Distributed
implementation

The Dragonfly Component

[Anderson et al 00]

Outline

aWhy is developing groupware hard?
aProgramming abstractions for groupware
`Declarative development of groupware
`Conceptual architectures as programs

aFlexible implementation of groupware
`Annotations for implementation
`The Dragonfly implementation architecture

aTimings

Timing Clock and
Dragonfly

Local Area Wide Area

Naïve Implementation 1,250 ms 24,000 ms
Presend Caching 130 ms 250 ms
Eager Concurrency Ctl 123 ms 190 ms
Replication 89 ms 86 ms

Response time where:

• Server: LAN: UltraSparc 1,
York U.; WAN: 100 MHz R4000
SGI Indy, Queen’s University

• Client: UltraSparc 1, York U.

• Network Latency: LAN: 1 ms;
WAN: 11 ms

Conclusions

aLarge gap between design-level
architecture and distributed system
aDragonfly acts as layer between, allowing

experimentation with implementation
strategies
aProgrammers can give high-level guidance

for implementation

