
CISC 839
Software Engineering of
Usable Computing Systems

T.C. Nicholas Graham
http://www.cs.queensu.ca/~graham/cisc836

Outline

aWhy is developing groupware hard?
aProgramming abstractions for groupware
`Declarative development of groupware
`Conceptual architectures as programs

aFlexible implementation of groupware
`Annotations for implementation
`The Dragonfly implementation architecture

aTimings

Strategies for Cheating
Latency

aSacrifice group response time
aReduce granularity of group actions
aTake turns
aRisk roll-backs
aBuffer
aSpend CPU, memory, bandwidth

Notifications
Updates /
Requests

Server

Client

Cache

Updates

Requests
Updates / Requests

Updates

Notifications
Updates /
Requests

Server

Client

Space of Implementation
Techniques

aConcurrency control: none, optimistic, pessimistic

aTopology: tree, star, mesh, point

aReplication: centralized, partially replicated, replicated

aCache activity: passive, active

aCache location: standard, mirror

aNetwork delivery: lossless, lossy

aNetwork order: FIFO, any

What Strategy is Best?

Depends on:
aApplication characteristics
`Symmetry, roles, synchronicity

aHardware characteristics
`How cheap is bandwidth, latency, CPU,

memory?

Annotations for
Distributed

Implementation

• Client / Server Split:

• Replication

•Concurrency Control

Conceptual
Architecture

Transform

Hide issues of:
• Concurrency control
• Distribution
• Networking
E.g. Clock, PAC*, C2, ALV

Choose:
• Centralized or Replicated?
• Pessimistic or Optimistic?
• Caching?
• Hybrid?

Distributed
System

Conceptual
Architecture

Developers concentrate of functionality
of groupware application, not
distributed implementation

• Hybrid implementation
• Dynamic reconfiguration

Distributed
System

Dragonfly
Implementation

Architecture

Encapsulates design choices for:
• Replication
• Caching
• Concurrency Control
• Client-Server Split

Conceptual
Architecture

Annotations

Distributed
System

Implementation
Architecture

Performance
Feedback

Distributed
implementation

The Dragonfly Component

[Anderson et al 00]

Outline

aWhy is developing groupware hard?
aProgramming abstractions for groupware
`Declarative development of groupware
`Conceptual architectures as programs

aFlexible implementation of groupware
`Annotations for implementation
`The Dragonfly implementation architecture

aTimings

Timing Clock and
Dragonfly

 Local Area Wide Area

Naïve Implementation 1,250 ms 24,000 ms
Presend Caching 130 ms 250 ms
Eager Concurrency Ctl 123 ms 190 ms
Replication 89 ms 86 ms

Response time where:

• Server: LAN: UltraSparc 1,
York U.; WAN: 100 MHz R4000
SGI Indy, Queen’s University

• Client: UltraSparc 1, York U.

• Network Latency: LAN: 1 ms;
WAN: 11 ms

Conclusions

aLarge gap between design-level
architecture and distributed system
aDragonfly acts as layer between, allowing

experimentation with implementation
strategies
aProgrammers can give high-level guidance

for implementation

User Interface Plasticity

Plasticity in User Interfaces

aProliferation of device types has led to difficulty
in producing, maintaining different versions of
products

aPlatform versions differ in
`User interface
`Functionality
`Development techniques

Version Problem

aTherefore, each version requires its own
`system task model
`UI design
`Architecture
`Evaluation

⌧Usability testing, heuristic evaluation, etc.

aMaintaining consistency between versions
aProduct branding

Plasticity in User Interfaces

Models Influencing
Design and Runtime

Static
Plasticity

Dynamic
Plasticity

Domain

Tasks

Platform

Environment

Interactors

Evolution

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

Runtime
Configuration

Runtime
Configuration

Reconfigure

Solutions

aStill a research area
aStatic plasticity
`Generate some portions of UI from higher-level

models
`E.g. from task model (Adept, Trident, Teallach)
`E.g., from abstract UI description (XML/XSL, WML)

aDynamic plasticity
`System uses runtime models to adjust its behaviour

Static Plasticity

aProcess for creating device-
specific versions of application

aTrade off
`Development time
`Version consistency
`Quality of individual versions

aTechnologies
`WML (E.g., Sympatico/Lycos)

`XML/XSL/UIML (E.g., 724 Solutions)

`ATS (Design Recovery Inc)

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

Static Plasticity
System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

Identify tasks to be
supported by a particular
version of the product.

Static Plasticity
System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface
Create device-independent
version of user interface.

Static Plasticity
System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface Reify abstract user interface
into device-specific version.

Static Plasticity
System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

Bind into device-specific
version of application.

Static Plasticity

aChoice of version split
point influences
`Development cost
`Impact of changes
`Consistency
`Usability of different

versions

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

Platform 1 Platform 2

Static Plasticity

aChoice of version split
point influences
`Development cost
`Impact of changes
`Consistency
`Usability of different

versions

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

Platform-
Specific

Application

Concrete
User

Interface

Platform 1 Platform 2

Example: WML

aWireless Markup Language
(WML) used to abstract
differences between small
devices
`Usually Mobile Phones

aTagged language similar to
HTML

aAbstract differences in display
size, input mechanisms

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

AUI’s in WML

Source: Ericsson,
Mobile Phone
R380 Design
Guidelines for
Mobile Services

Example: XML/XSL/UIML

aXML used to specify abstract
version of user interface

aAutomated translation to
concrete user interface

aTranslation rules expressed
using XSLT

aConcrete user interfaces
expressed in (e.g.) UIML

System
Tasks

Platform-
Specific

Application

Concrete
User

Interface

Abstract
User

Interface

UIML

XML

XSLT
Transformation

XML
a XML documents consist of tagged text
a Tags indicate semantics of data
a Tags may be arbitrary

`Follow format of
<tagname attr1=value1,…,attrn=valuen>

contents
</tagname>

<books>
<book isbn=”0201199300">

<title>Software Architecture in Practice</title>
<author>Len Bass</author>
<author>Paul Clements</author>
<author>Rick Kazman</author>

</book>
</books>

XML DTD’s

a A DTD (Document Type Definition) describes legal use of tags in a
particular kind of XML document
<!DOCTYPE listOfBooks [

<!ELEMENT books (book*)>
<!ELEMENT book (title,author+)>

<!ATTLIST book isbn CDATA “0”>
<!ELEMENT title (#CDATA)>
<!ELEMENT author (#CDATA)>

]>
<listOfBooks>

<books>
<book isbn=”0201199300">

<title>Software Architecture in
Practice</title>

<author>Len Bass</author>
<author>Paul Clements</author>
<author>Rick Kazman</author>

</book>
</books>

Example document following this DTD

DTD’s specify
aWhat tags are legal
a How tags are combined

`A book must have a title and 1 or more authors
`A set of books consists of 0 or more books
`A book has an ISBN attribute (unique number for books), which

is character text (CDATA), with a default value of “0”

<books>
<book isbn=”0201199300">

<title>Software Architecture in
Practice</title>

<author>Len Bass</author>
<author>Paul Clements</author>
<author>Rick Kazman</author>

</book>
</books>

XML/XSL

aSpecify content (AUI) using XML
aUse XSLT to transform to CUI
`eXtensible Stylesheet Language Transform
`Similar idea to TXL

XML/XSLT

AUI
(XML)

XSTL
Transformation

Engine

CUI
(XML)

Rendering
Engine (e.g.
Netscape)

User
Interface

Device Specific
XSTL

Transformation

Example

Source: http://www.xml.com/pub/2000/08/holman/s1.html

XML Description of a
customer record

XSLT Transformation UIML

aUser Interface Markup Language
`Specific XML dialect to express user interfaces
`Normally combined with style-sheets to provide

AUI⇒CUI transformation

Source: http://www.uiml.org/tutorials/uiml1/index.htm

UIML

UIML
Document

UIML Rendering
Engine

User
Interface

(e.g. in Java)

UIML Style
Specification

Example: A
dialogue box

Example: A
dialogue box

