
CISC 839
Software Engineering of
Usable Computing Systems

T.C. Nicholas Graham
http://www.cs.queensu.ca/~graham/cisc836

Plasticity in User Interfaces

aProliferation of device types has led to difficulty
in producing, maintaining different versions of
products

aPlatform versions differ in
`User interface
`Functionality
`Development techniques

Version Problem

aTherefore, each version requires its own
`system task model
`UI design
`Architecture
`Evaluation

⌧Usability testing, heuristic evaluation, etc.

aMaintaining consistency between versions
aProduct branding

Plasticity in User Interfaces

Domain

Tasks

Platform

Environment

Interactors

Evolution

Task-Oriented
Specification

Platform-
Specific

Application

Concrete User
Interface

Abstract User
Interface

Models Influencing
Design and RuntimeStatic Plasticity: Developing

application versions for different
target platforms

Runtime
Configuration

Runtime
Configuration

Reconfigure

Dynamic Plasticity: System
adapts to changes in
environment, platform

Solutions

aStill a research area
aStatic plasticity
`Generate some portions of UI from higher-level

models
`E.g. from task model (Adept, Trident, Teallach)
`E.g., from abstract UI description (XML/XSL, WML)

aDynamic plasticity
`System uses runtime models to adjust its behaviour

Example [Crease et al., 2000]

aMotivation
`Context of use of hand-held devices constantly

changes
`E.g., context of mobile phone includes

⌧Ambient light, sound
⌧Use - when phone is used for voice, user may not be able to

read display

aArchitecture
`Abstract user interface provides interacts with

application
⌧Specified as finite state machine

`Concrete instantiation of user interface runs as
coprocess with abstract interface

Simple Example: Three
Implementations of a Progress Bar Input Architecture

Example - mouse selection
Output
Architecture

Dynamic Discovery
Architectures

Example: Printing a
Photograph

a I take a picture on my
digital camera

a I want to print it

Example: Printing a
Photograph

aI go to a shop that
has printing services

aThe shop has several
printers at different
prices
`Colour vs black and

white
`Photo-grade paper vs

normal paper Colour ($2/page)

Black and White
($0.50/page)

Example: Printing a
Photograph

aI select a print
command on the
camera

aMy camera uses a
wireless network
connection to find out
information:
`What printers are

available
`What their properties

are
⌧Colour/B&W, Price, …

Colour ($2/page)

Black and White
($0.50/page)

Example: Printing a
Photograph

aMy camera has an
LCD display that
shows which printers
are available

aI choose one, and
start printing on the
selected printer

Colour ($2/page)

Black and White
($0.50/page)

Select Printer
Black and White
a$0.50/page

Colour
a$2.00/page

Interesting Features of
Example

aMy camera dynamically discovers existence of
two printers
`Consequence of invoking “print” in the printing shop

aMy camera dynamically determines how to
communicate with the chosen printer

Dynamic Discovery
Architectures

aFeatures
`Runtime ability to find architectural components

offering services
`Ability to negotiate how to communicate with

discovered services
`Ability to dynamically configure connections to these

services
`Ability to repair faults (“self-healing”)

Examples of Services

a Printing
a Faxing
a Statistical analysis
a Maps
a Phone book
a C++ compiler

a Disk storage
a Downloading
a English→French

translation
a Credit card validation
a Airline flight information
a…

Examples of Dynamic
Discovery Architectures

a Jini
`Java technology

⌧W. Keith Edwards, Core Jini, Prentice Hall, 1999
⌧http://www.jini.org

a Bluetooth
`Wireless dynamic discovery protocol for small devices
`Consortium: 3Com, Ericsson, IBM, Motorola, Nokia, Microsoft, …

⌧http://www.bluetooth.com

a UPnP
`Universal Plug and Play
`Microsoft initiative, based on XML, focus on home networking

⌧http://upnp.org

Jini

aPrimary features
`Discovery
`Lookup
`Leasing

Lookup Service

a Services are registered
via a Lookup Service

a Services register with a
lookup service

a Clients find services via
lookup service

a Lookup service is a form
of “yellow pages” where
services are advertised
and found

Lookup Service

Services

What is a Service?

a A service has a type
`E.g., Printer, FaxMachine,

MapDataBase, …

a A service has a proxy
`Code implementing the

service
`Typically code that

connects to the
implementation of the
service

a A service has an id

Proxy

Attributes

What is a Service?

a A service has a set of
attributes

a E.g., for printer,
attributes may be:
`Speed
`Location
`Cost
`Colour/B&W
`Paper types, sizes available
`…

Proxy

Attributes

Service Types

aService types are simply Java interfaces
`A set of methods that the service implements

aThe proxy is Java code implementing the service
type

aExample (next slide)
`Jini PrintService interface

Method Summary
net.jini.core.event.Even

tRegistration
addEventListener(Class[] theCategories, PrintServiceAttribute[] theValues,
net.jini.core.event.RemoteEventListener theListener, MarshalledObject theHandbackObject,
long theRequestedLeaseDuration)

Add an event listener to this Print Service.

DocPrintRequest createDocPrintRequest()
Create a Print Request object, bound to this Print Service object, that is able to print a single doc.

DocPrintRequest createDocPrintRequest(Doc theDoc, PrintRequestAttributeSet theAttributes)
Create a Print Request object, bound to this Print Service object, to print the given doc with the given set of printing

attributes.

PrintServiceAttributeSet getAttributes()
Obtain a snapshot of this Print Service's attribute set.

Attribute getDefaultAttributeValue(Class theCategory, Settings theSettings)
Determine this Print Service's default printing attribute value in the given category.

AttributeSet getDefaultAttributeValues(Settings theSettings)
Determine all of this Print Service's default printing attribute values.

Class[] getSupportedAttributeCategories(Settings theSettings)
Determine the printing attribute categories a client can specify when setting up a job for this Print Service.

Object getSupportedAttributeValues(Class theCategory, Settings theSettings)
Determine the printing attribute values a client can specify in the given category when setting up a job for this Print

Service.

DocFlavor[] getSupportedDocFlavors(Settings theSettings)
Determine the print data formats a client can specify when setting up a job for this Print Service.

Settings getUnsupportedSettings(Settings theSettings)
Determine the settings for a supposed print job that this Print Service does not support, if any.

boolean isAttributeCategorySupported(Class theCategory, Settings theSettings)
Determine whether a client can specify the given printing attribute category when setting up a job for this Print

Service.

boolean isAttributeValueSupported(Attribute theValue, Settings theSettings)
Determine whether a client can specify the given printing attribute value when setting up a job for this Print Service.

boolean isDocFlavorSupported(DocFlavor theFlavor, Settings theSettings)
Determine whether a client can specify the given print data format when setting up a job for this Print Service.

Source: http://www.jini.org/standards/

Using a Service: Overview

a Services register themselves
with Lookup Service(s)

a Clients search for services.
When they find a match, they
download the service’s proxy
` Java code

a The client runs the proxy
(locally)

a If necessary, the proxy
connects back to the service to
carry out its task

Lookup Service

(1) Printer
registers
service with
Lookup
Service

(2) Camera
finds service
and downloads
proxy

(3) Camera
invokes proxy
to start printing

Proxy

(4) Proxy
invokes
printing over
the network

Discovery

a Both services and clients need
to be able to find local lookup
services
` To register, find services

a In any location, there may be
numerous lookup services
available

Lookup Service 1

Lookup Service 2

Multicast Request
Protocol

Multicast
Announcement
Protocol

Discovery

a Client (e.g. camera) searches
for Lookup Services via
Multicast Request Protocol

a Lookup Services broadcast
their presence via Multicast
Announcement Protocol

a Via these mechanisms, a client
can find a set of Lookup
Services

Lookup Service 1

Lookup Service 2

Multicast Request
Protocol

Multicast
Announcement
Protocol

Lookup

a When looking for a service,
client performs lookup on
lookup service(s)

a Lookup based on any of
` Service id

⌧If service has known id

` Type
⌧E.g., Printer, MapDataBase,

…

` Attributes
⌧E.g., Price < $3, Speed < 10

minutes, …

Lookup Service 1

Lookup Service 2

lookup (sid, t, attrs)
lookup (sid, t, attrs)

Lookup

a Lookup provides all matches to
query

a Can specify any subset of
parameters
` E.g., just type, just attributes,

…

Lookup Service 1

Lookup Service 2

lookup (sid, t, attrs)
lookup (sid, t, attrs)

Fault Tolerance

aWhat happens if part of
the system fails?
`Case 1: the client crashes

while holding a service
`Case 2: the service crashes

while still registered with
the Lookup Service

Lookup Service

(1) Printer
registers
service with
Lookup
Service

(2) Camera
finds service
and downloads
proxy

(3) Camera
invokes proxy
to start printing

Proxy

(4) Proxy
invokes
printing over
the network

Fault Tolerance (1)

a E.g., Camera runs out of
batteries while print job being
spooled
` Camera holds access to the

printer
` Printer now unavailable

forever to other clients

Lookup Service

(1) Printer
registers
service with
Lookup
Service

(2) Camera
finds service
and downloads
proxy

(3) Camera
invokes proxy
to start printing

Proxy

(4) Proxy
invokes
printing over
the network

(5) Camera
is turned off

Fault Tolerance (2)

a E.g., someone accidentally
unplugs printer from network.
Printer no longer responds to
proxies.
` Printer is still registered with

Lookup Service
` Clients will still erroneously

attempt to use this printer

Lookup Service

(1) Printer
registers
service with
Lookup
Service

(2) Camera
finds service
and downloads
proxy

(3) Camera
invokes proxy
to start printing

Proxy

Printer is
unplugged
from
network

Solution: Leasing

aProblem is “hold and wait”
`Never allow a client to obtain a service and hold it

indefinitely
`Never allow a service to obtain a slot in the service

lookup and hold it indefinitely

aLeasing restricts how long a service can be held

Leasing

aWhen a service is obtained, it is actually leased
for a period of time

aBefore the lease expires, the client must renew
the lease, or the service is no longer available to
that client

aTypical lease time: 5 seconds
aTherefore, if client fails, eventually the lease will

expire, and the service will be made available
again

Leasing and Service
Registration

aService registration also follows the lease
approach
`A registration with a Lookup Service has a fixed

duration
⌧Typically a lease of 5 seconds

`If the lease is not renewed, the service will no longer
be listed

`Therefore, services cease to be listed if they are no
longer available

`If a service is temporarily unavailable, it can be re-
registered when it returns

Self-Healing

aLeasing leads to self-healing
aThat is, if the distributed system breaks,

eventually leases will expire, and the system will
return to a correct state

Jini

aPrimary features
`Discovery
`Lookup
`Leasing

Bluetooth

aWireless connection of small devices
a E.g., PDA’s, cell phones, …
a Range 10m – 100m
a Bandwidth 57.6 kbps to 721 kbps

Bluetooth Protocols

aInquiry – find all nearby access points
aService discovery – determine what services

available from access point
aEstablish application-level connection to access

point to use service

UPnP

a Target is home network
`E.g., networking computers, printers, thermostat, lights, …

a Control point(s) maintain knowledge of what devices
available
`Clients search for control points via multicast

⌧HTTP Multicast UDP (HTTPMU)

`Control points communicate via HTTP UDP (HTTPU)
`Devices described via XML

Plasticity in User Interfaces

Domain

Tasks

Platform

Environment

Interactors

Evolution

Task-Oriented
Specification

Platform-
Specific

Application

Concrete User
Interface

Abstract User
Interface

Models Influencing
Design and RuntimeStatic Plasticity: Developing

application versions for different
target platforms

Runtime
Configuration

Runtime
Configuration

Reconfigure

Dynamic Plasticity: System
adapts to changes in
environment, platform

Class Exercise

aArchitect a travel planner using Jini,
Bluetooth
`Supports finding best route, purchasing

tickets, paying with credit card

